图卷积网络(Graph Convolutional Network, GCN)

图卷积网络(Graph Convolutional Network, GCN)是一种用于处理图结构数据的深度学习模型。GCN编码器的核心思想是通过邻接节点的信息聚合来更新节点表示。

图的表示

一个图 G通常表示为 G=(V,E),其中:

  • V 是节点集合,包含 N个节点。
  • E是边集合,包含图中所有的边。

节点特征矩阵

假设每个节点 i有一个特征向量 x_i(维度为 F),所有节点的特征可以表示为矩阵 \mathbf{X} \in \mathbb{R}^{N \times F}

邻接矩阵

图的邻接矩阵 \mathbf{A} \in \mathbb{R}^{N \times N}表示图中节点之间的连接关系,其中 \mathbf{A}_{ij} = 1表示节点 i和节点 j之间有边,反之为 0。

度矩阵

度矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值