HDU - 3534 Tree

本文介绍了一种解决树上两点间最长距离及其出现次数的问题的方法,使用树形DP和点分治两种策略。通过两次深度优先搜索(DFS)找到树的直径,并利用树形DP自下而上维护最长链及其个数,实现高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给定一棵有 n n n 个结点的树,求两点间最长距离,以及最长距离的点对个数。 ( n ≤   ? ) (n\leq~?) (n ?)

链接:

https://vjudge.net/problem/HDU-3534

解题思路:

即求直径,以及直径的个数。直径可以由两次 d f s dfs dfs 得到,距离为 d d d 的点对个数,点分可解。更简单的做法是树形 d p dp dp,自下而上维护最长链及最长链个数,相应更新。

参考代码:

树形 d p dp dp

#include<bits/stdc++.h>

using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
#define sz(a) ((int)a.size())
#define pb push_back
#define lson (rt << 1)
#define rson (rt << 1 | 1)
#define gmid (l + r >> 1)
const int maxn = 1e6 + 5;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;

vector<pii> G[maxn];
ll mx[maxn], sum[maxn];
int n; ll ans1, ans2;

void dfs(int u, int f){

    mx[u] = 0, sum[u] = 1;
    for(auto &e : G[u]){

        int v = e.second, w = e.first;
        if(v == f) continue;
        dfs(v, u);
        if(mx[v] + w + mx[u] > ans1) ans1 = mx[v] + w + mx[u], ans2 = sum[u] * sum[v];
        else if(mx[v] + w + mx[u] == ans1) ans2 += sum[u] * sum[v];
        if(mx[v] + w > mx[u]) mx[u] = mx[v] + w, sum[u] = sum[v];
        else if(mx[v] + w == mx[u]) sum[u] += sum[v];
    }
}

int main(){

    ios::sync_with_stdio(0); cin.tie(0);
    while(cin >> n){

        ans1 = ans2 = 0;
        for(int i = 1; i <= n; ++i){

            G[i].clear();
        }
        for(int i = 1; i < n; ++i){

            int u, v, w; cin >> u >> v >> w;
            G[u].pb({w, v}), G[v].pb({w, u});
        }
        dfs(1, 0);
        cout << ans1 << " " << ans2 << endl;
    }
    return 0;
}

 
点分治:

#include<bits/stdc++.h>

using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
#define sz(a) ((int)a.size())
#define pb push_back
#define lson (rt << 1)
#define rson (rt << 1 | 1)
#define gmid (l + r >> 1)
const int maxn = 1e6 + 5;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;

vector<pii> G[maxn];
int siz[maxn], vis[maxn];
ll dis[maxn], ans1, ans2;
int n, tn, rmn, rt, tot;

void getRt(int u, int f){

    int mx = 0; siz[u] = 1;
    for(auto &e : G[u]){

        int v = e.second, w = e.first;
        if(v == f || vis[v]) continue;
        getRt(v, u);
        siz[u] += siz[v];
        mx = max(mx, siz[v]);
    }
    mx = max(mx, tn - siz[u]);
    if(mx < rmn) rmn = mx, rt = u;
}

void dfs(int u, int f, ll d){

    dis[++tot] = d;
    for(auto &e : G[u]){

        int v = e.second, w = e.first;
        if(v == f || vis[v]) continue;
        dfs(v, u, d + w);
    }
}

void cal(int u, int d, int flg){

    tot = 0;
    dfs(u, 0, d);
    sort(dis + 1, dis + 1 + tot);
    for(int i = 1; i <= tot; ++i){

        ll tmp = ans1 - dis[i];
        int p1 = lower_bound(dis + 1, dis + 1 + tot, tmp) - dis;
        int p2 = lower_bound(dis + 1, dis + 1 + tot, tmp + 1) - dis;
        ans2 += flg * (p2 - p1);
    }
}

void dfz(int u){

    vis[u] = 1;
    cal(u, 0, 1);
    for(auto &e : G[u]){

        int v = e.second, w = e.first;
        if(vis[v]) continue;
        cal(v, w, -1);
        tn = siz[v], rmn = inf, getRt(v, u);
        dfz(rt);
    }
    vis[u] = 0;
}

void dfss(int u, int f){

    for(auto &e : G[u]){

        int v = e.second, w = e.first;
        if(v == f) continue;
        dis[v] = dis[u] + w;
        dfss(v, u);
    }
}

ll getLen(){

    dis[1] = 0, dfss(1, 0);
    int u = max_element(dis + 1, dis + 1 + n) - dis;
    dis[u] = 0, dfss(u, 0);
    ll d = *max_element(dis + 1, dis + 1 + n);
    return d;
}

int main(){

    ios::sync_with_stdio(0); cin.tie(0);
    while(cin >> n){

        ans1 = ans2 = 0;
        for(int i = 1; i <= n; ++i){
            
            G[i].clear();
        }
        for(int i = 1; i < n; ++i){

            int u, v, w; cin >> u >> v >> w;
            G[u].pb({w, v}), G[v].pb({w, u});
        }
        ans1 = getLen();
        tn = n, rmn = inf, getRt(1, 0);
        dfz(rt);
        ans2 >>= 1;
        cout << ans1 << " " << ans2 << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值