逻辑回归原理理解及公式推导

本文详细介绍了逻辑回归的原理,包括其作为分类模型的角色,以及为何适合处理离散特征。文章深入探讨了逻辑回归的分布、损失函数的推导,并解释了为何不用平方误差损失函数,而是选择交叉熵损失函数。此外,还阐述了离散化特征对逻辑回归模型的益处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、算法介绍

(1)逻辑回归(Logistics Regression)是一种分类模型,常用于二分类问题。
(2)我们可以用一句话来表示逻辑回归:逻辑回归是假设数据服从伯努利分布,基于最大似然估计推导的方法,通过似然函数的对数变化,运用梯度下降的方法求解参数,来达到将数据二分类的目的。

1.1 逻辑回归分布

逻辑回归的分布是一种连续型的概率分布,它的分布函数和密度函数分别是:
在这里插入图片描述
在这里插入图片描述

1.2 逻辑回归

以处理二分类的问题为例,我们假设数据集中存在一条直线,这条直线对于数据集来说可以实现线性可分。
如图:

在这里插入图片描述
该直线(划分边界)可以表示为:
在这里插入图片描述
此时通过某个样本点对于划分边界左边公式取值与0的大小比较,来判定该样本属于哪一类别;而逻辑回归(Logistic)还需要加一层,它要找到分类概率P(Y=1)与输入向量X的直接关系,然后通过比较概率值来判别类别。

如何用连续的数值去预测离散标签?
由于<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值