1、算法介绍
(1)逻辑回归(Logistics Regression)是一种分类模型,常用于二分类问题。
(2)我们可以用一句话来表示逻辑回归:逻辑回归是假设数据服从伯努利分布,基于最大似然估计推导的方法,通过似然函数的对数变化,运用梯度下降的方法求解参数,来达到将数据二分类的目的。
1.1 逻辑回归分布
逻辑回归的分布是一种连续型的概率分布,它的分布函数和密度函数分别是:
1.2 逻辑回归
以处理二分类的问题为例,我们假设数据集中存在一条直线,这条直线对于数据集来说可以实现线性可分。
如图:
该直线(划分边界)可以表示为:
此时通过某个样本点对于划分边界左边公式取值与0的大小比较,来判定该样本属于哪一类别;而逻辑回归(Logistic)还需要加一层,它要找到分类概率P(Y=1)与输入向量X的直接关系,然后通过比较概率值来判别类别。
如何用连续的数值去预测离散标签?
由于<