- 博客(62)
- 问答 (1)
- 收藏
- 关注
原创 【机器学习笔记 Ⅲ】5 强化学习
是机器学习的一个分支,其核心思想是让智能体(Agent)通过与环境(Environment)的交互学习最优策略(Policy),以最大化长期累积奖励(Reward)。它模拟了人类或动物通过“试错”进行学习的过程,广泛应用于游戏AI、自动驾驶、机器人控制、推荐系统等领域。尽管面临样本效率、稳定性等挑战,但结合深度学习后,在复杂任务(如游戏、机器人)中展现了强大潜力。其中 ( \gamma )(折扣因子,0 ≤ γ ≤ 1)权衡当前奖励与未来奖励的重要性。智能体的目标是学习一个策略 ( \pi ),最大化。
2025-07-08 17:23:37
644
原创 【机器学习笔记 Ⅲ】4 特征选择
特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。通过系统化的特征选择,可显著提升模型效率与效果。实际应用中需结合数据特性和业务需求灵活调整方法。:基于统计指标评估特征与目标的相关性,独立于模型。:通过模型性能迭代选择特征子集。:考虑特征交互,效果通常更好。:模型训练过程中自动选择特征。:计算高效,适合高维数据。
2025-07-07 22:54:23
891
原创 【机器学习笔记 Ⅲ】2 K-Means聚类算法
之一,通过迭代将数据划分为K个簇(Cluster),使得同一簇内数据点尽可能相似,不同簇间差异显著。:重复分配和更新,直到簇中心不再变化或达到最大迭代次数。:随机选择K个数据点作为初始簇中心。:将每个数据点分配到最近的簇中心。:重新计算每个簇的中心(均值)。K-Means是最常用的。
2025-07-07 17:38:39
521
原创 【机器学习笔记 Ⅲ】1 无监督学习
与监督学习不同,它不依赖预先标注的输出结果,而是通过数据本身的分布特性进行学习。将数据分组为相似的簇(Cluster),同一簇内样本相似度高,不同簇间差异大。:{尿布} → {啤酒}(顾客买尿布时很可能买啤酒)。发现数据中的频繁项集和关联规则(如购物篮分析)。减少特征数量,保留关键信息,用于可视化或去噪。无监督学习是机器学习的一个核心分支,其特点是。,选择最大特征值对应的特征向量作为主成分。识别数据中的离群点或异常模式。PCA通过特征值分解协方差矩阵。
2025-07-07 12:14:50
695
原创 【机器学习笔记 Ⅱ】12随机森林
通过构建多棵决策树并综合其预测结果,显著提升模型的准确性和鲁棒性。其核心思想是“集体智慧优于个体决策”。利用样本在所有树中的平均深度(Isolation Forest原理相近)。随机森林是一种基于集成学习(Ensemble Learning)的。通过随机森林的相似性矩阵估算缺失值。
2025-07-07 11:39:18
518
原创 【机器学习笔记 Ⅱ】11 决策树模型
通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。:年龄、收入、信用评分。:预测是否批准贷款。
2025-07-07 11:33:07
589
原创 【机器学习笔记 Ⅱ】9 模型评估
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。通过系统化评估,可以确保模型不仅在数据上表现良好,还能在实际业务中创造价值!
2025-07-07 11:19:12
1203
原创 【机器学习笔记 Ⅱ】7 多类分类
将logits转换为归一化概率,与交叉熵损失配合使用。i \in (0,1) ),且 ( \sum。:目标变量有多个互斥类别,需输出概率分布。
2025-07-07 10:40:08
878
原创 【机器学习笔记 Ⅱ】6 激活函数
每层通过非线性函数(如ReLU)变换,使网络能拟合任意复杂函数(Universal Approximation Theorem)。链式法则中,若激活函数导数 ( \sigma’(z) ) 过小(如Sigmoid在两端导数≈0),多层连乘导致梯度指数级衰减。激活函数是神经网络的核心组件,其作用远不止“引入非线性”。:ReLU在 ( x<0 ) 时梯度为0,可能导致神经元死亡。激活函数是神经网络的“灵魂”,决定了模型能否学习复杂模式!:多层神经网络等价于单层线性变换(矩阵连乘仍是线性)。
2025-07-07 10:15:35
777
原创 【机器学习笔记 Ⅱ】5 矩阵乘法
矩阵乘法是神经网络、图形学、科学计算等领域的核心运算,用于高效处理线性变换和批量数据计算。以下是其数学定义、计算规则及实际应用的系统解析。对大量零元素的矩阵(如自然语言处理的词向量),使用稀疏格式(如CSR)节省内存。矩阵乘法是机器学习的“基石运算”,掌握其原理和实现能深入理解模型底层运作!NumPy底层调用BLAS(如OpenBLAS、MKL)加速矩阵运算。
2025-07-07 10:05:48
357
原创 【机器学习笔记 Ⅱ】4 神经网络中的推理
与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。通过高效实现推理,训练好的模型可以快速应用于实际场景(如实时分类、自动驾驶决策等)。推理(Inference)是神经网络在训练完成后。
2025-07-07 09:50:00
394
原创 【机器学习笔记 Ⅱ】3 前向传播
text{输入层} \rightarrow \text{隐藏层1} \rightarrow \dots \rightarrow \text{输出层}的过程,通过逐层计算每一层的输出,最终得到预测结果。:自动处理前向传播,用户只需定义层结构。方法自定义前向逻辑。前向传播是神经网络中。
2025-07-07 01:32:29
974
原创 【机器学习笔记 Ⅱ】2 神经网络中的层
神经网络中的“层”是模型的基本构建模块,每一层由多个**神经元(或节点)**组成,负责对输入数据进行特定类型的变换(如特征提取、非线性激活)。通过堆叠不同的层,神经网络可以学习从简单到复杂的多层次特征表示。通过灵活组合不同类型的层,可以构建适应各种任务的强大模型!:每个神经元与前一层的所有神经元连接。:分类器、特征组合。
2025-07-06 21:05:38
830
原创 【机器学习笔记 Ⅱ】1 神经网络
能够通过多层非线性变换学习复杂的输入-输出关系。它是深度学习的基础,广泛应用于图像识别、自然语言处理、游戏AI等领域。神经网络通过堆叠简单的神经元实现了强大的表达能力,是解决复杂模式识别任务的利器!神经网络是一种受生物神经元启发设计的。
2025-07-06 20:58:37
655
原创 【机器学习笔记Ⅰ】13 正则化代价函数
{\text{原始损失}} + \underbrace{\lambda \cdot R(\mathbf{w})}的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。,合理使用能显著提升模型鲁棒性!正则化代价函数是机器学习中用于。{\text{正则化项}}
2025-07-06 20:03:26
792
原创 【机器学习笔记Ⅰ】12 逻辑回归
(如预测是否患病、是否点击广告)。虽然名字含“回归”,但它实际是一种分类模型,通过概率输出(0到1之间)判断类别。它是分类任务的“瑞士军刀”,理解其原理是掌握更复杂模型(如神经网络)的基础!逻辑回归是机器学习中经典的。
2025-07-06 20:02:41
890
原创 【机器学习笔记Ⅰ】11 多项式回归
text{若 } x = \begin{bmatrix} x_1 \ x_2 \end{bmatrix}, \text{二次多项式特征为 } \begin{bmatrix} 1, x_1, x_2, x_1^2, x_2^2, x_1 x_2 \end{bmatrix},通过引入特征的幂次项(如 (x^2, x^3))来拟合非线性关系。它保留了线性回归的简洁性,同时能捕捉更复杂的数据模式。通过合理使用多项式回归,可用线性方法解决复杂的非线性问题!
2025-07-06 20:01:49
824
原创 【机器学习笔记Ⅰ】10 特征工程
构建更适合模型的高质量特征。其质量直接决定模型性能上限(“数据和特征决定了模型的上限,而算法只是逼近这个上限”)。,需结合领域知识和数据直觉,不断优化!特征工程是机器学习和数据科学中的。
2025-07-06 20:01:04
984
原创 【机器学习笔记Ⅰ】9 特征缩放
从而加速模型训练、提升性能并避免某些特征主导模型。特征缩放是机器学习数据预处理的关键步骤,旨在。“梯度下降必缩放,距离模型量纲关;树模型前可忽略,防漏数据记心间。
2025-07-06 19:59:46
723
原创 【机器学习笔记Ⅰ】 8 多元梯度下降法
梯度下降是机器学习优化的基石,理解它才能掌握更复杂的模型(如逻辑回归、神经网络)!多元线性回归(Multiple Linear Regression)是。(权重和偏置),最小化预测误差(如均方误差)。
2025-07-06 19:58:54
901
原创 【机器学习笔记Ⅰ】7 向量化
它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。:向量化是“用数学的思维写代码”,是高效数据科学的必备技能!:计算两个数组的点积(非向量化)(数据量越大优势越明显)。:向量化代码可比循环快。
2025-07-06 19:57:48
948
原创 【机器学习笔记Ⅰ】6 多类特征
这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。:为每个类别分配一个整数(如红=0, 绿=1, 蓝=2)。:特征是离散的、有限的类别,且类别之间无大小或顺序关系。:用该类别的目标变量均值(如房价均值)代替类别标签。机器学习模型(如线性回归、神经网络)通常只能处理。:为每个类别创建一个新的二进制特征(0或1)。,直接输入模型会导致错误。
2025-07-06 19:56:54
639
原创 【机器学习笔记Ⅰ】4 梯度下降
用于通过迭代调整模型参数(如权重 ( w ) 和偏置 ( b )),(如均方误差、交叉熵)。梯度下降是机器学习中最核心的。
2025-07-06 19:53:35
697
原创 【机器学习笔记Ⅰ】3 代价函数
(也称为)是机器学习中用于的函数。它衡量模型预测值(( \hat{y} ))与真实值(( y ))之间的差异,并通过优化算法(如梯度下降)调整模型参数(如权重 ( w ) 和偏置 ( b )),以最小化这种差异。
2025-07-06 19:52:46
289
原创 【机器学习笔记Ⅰ】2 线性回归模型
找到最优的权重 ( w ) 和偏置 ( b ),使得预测值 ( y ) 与真实值 ( y_{\text{true}} ) 的误差最小。(预测连续数值输出)。它的核心思想是通过拟合一条直线(或超平面)来描述输入特征(自变量)与目标变量(因变量)之间的线性关系。)是机器学习中最基础、最常用的。衡量预测值与真实值的差距,常用。
2025-07-06 19:51:43
528
原创 算法:基础算法(一)
1. 排序1.1 冒泡排序法每次内循环找到所有数组中最大值得坐标 放到最后面替换的时候 如果当前坐标下的数比下一个数大,就会互换位置static Integer[] test1(Integer[] nums) { for (int i = 0; i < nums.length-1; i++) { for (int j = 0; j < nums.length-1-i; j++) { // 找到最大的数字 if (nu
2022-05-14 18:10:39
296
空空如也
企业微信 分片拉取多媒体数据 第二个512k报错10000
2022-02-25
TA创建的收藏夹 TA关注的收藏夹
TA关注的人