- 博客(9)
- 收藏
- 关注
原创 梯度下降的原理
**引言:**梯度下降在机器学习中非常重要。机器学习的核心内容就是把数据投入一个设计好的模型中,让模型自动的“学习”,从而优化模型的各种参数,最终使得在某一组参数下该模型能够最佳地匹配该学习任务。这个“学习”的过程就是机器学习算法的关键。梯度下降法(Gradient Descent)就是实现该“学习”过程的一种最常见的方式,尤其是在深度学习(神经网络)模型中。 各种教材中常常使用大雾中下山的例子介绍梯度下降法,梯度下降的方法与下山相似,函数代表着一座山,我们的目标就是找到这个函数的最小值,也就是山底。这个过
2021-05-09 18:43:35
532
1
原创 随机森林及重要参数解析
1. 集成算法概述: 通常说有三种集成算法:装袋法(Bagging)、提升法(Boosting)和stacking。装袋法的基本思想是构建多个相互独立的基评估器,然后通过预测平均或多数表决原则来决定集成评估器的结果。装袋法的典型代表就是随机森林(RandomForest)。随机森林是由多个决策树集成而成的。目标是多个评估器建模的结果,汇总后得到一个综合结果,以此来获取比单个模型更好的回归或分类表现。 2. 随机森林重要参数解析 n_estimators:森林中基评估器的数量,即树的数量。n_estima
2021-04-26 17:11:06
10553
1
原创 str量化转化为int
在机器学习中,大多数算法只可处理数值型数据,fit的时候要求输入数组或矩阵,因此对于文字型数据要进行编码处理,即转化为数值型。在sklearn.preprocessing中有OrdinalEncoder /LabelEncoder/OneHotEncoder /get_dummies 可以将离散的类别转换为int。下面具体的操作方式说明。 OrdinalEncoder,LabelEncoder OrdinalEncoder,与LabelEncoder用法 相似,效果是一样的。 OrdinalEnc...
2021-04-25 11:14:57
2457
1
原创 使用boston房价数据进行线性回归分析
理解数据 import pandas as pd import numpy as np import sklearn.datasets as datasets from sklearn.linear_model import LinearRegression,SGDRegressor from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklea
2021-04-22 16:51:51
3333
1
原创 使用泰坦尼克号数据进行决策树、随机森林
使用泰坦尼克号数据进行决策树、随机森林决策树分类器随机森林 决策树分类器 sklearn.tree.DecisionTreeClassifier(criterion=‘gini’,max_depth=None,random_state=None) ① criterion 分类器,默认为gini ② max_depth 决策树的深度大小 ③ random_state 随机数种子 import pandas as pd import numpy as np from sklearn.tree import
2021-04-14 00:28:01
1403
2
原创 归一化标准化处理
归一化标准化处理归一化标准化 归一化 归一化指通过对原始数据进行变换把数据映射到[0,1]之间。 但在特定场景下最大值最小值是变化的,另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景。 import numpy as np import pandas as pd #from sklearn.neighbors import KNeighborsClassifier #from sklearn.model_selection import train_test_s
2021-04-08 16:41:24
540
1
原创 时间序列
时间序列 1.生成一段时间范围 pd.date_range(start=None, end=None, periods=None, freq=‘D’) 输入start与end以及freq 生成start到end,频率为freq的时间 也可使用period生成时间段 import pandas as pd pd.date_range(start='20200101',end='20201031',freq='M') pd.date_range(start='20200101',period=10) 2.使用
2021-01-07 12:15:23
282
2
原创 <笔记2>numpy的生成随机数用法小记
numpy的生成随机数用法小记 numpy生成随机数 <以下图片来自黑马程序猿录播课程笔记> import numpy as np import random #random 生产随机数 np.random.randint #np.random.randint(low,high,(shape)) low 最小值,high最大值,shape形状 np.random.randint(10,20,(3,4)) #随机种子,random.seed 每一次随机数一样 np.random.seed(10
2021-01-02 19:10:36
137
原创 <笔记1>matplotlib绘图工具笔记
matplotlib绘图工具笔记 python中有许多非常方便的可视化工具,例如matplotlib,seaborn等。在这里主要总结matplotlib的简单绘图方法。 设置图形的大小和中文显示,图片保存 import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['Microsoft YaHei'] #中文表示 plt.rcParams['axes.unicode_minus']=False #设置图形大小 plt.figure(f
2021-01-02 18:49:47
172
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人