Pytorch_神经网络 2.1Numpy和torch对比

1.numpy的array和torch表示的对比

import torch
import numpy as np

np_data=np.arange(6).reshape((2,3))
torch_data=torch.from_numpy(np_data)
tensor2array=torch_data.numpy()

print(
    '\nnumpy',np_data,
    '\ntorch',torch_data,
    '\ntensor2array',tensor2array,
    )

tensor2array=torch_data.numpy() 让其以变为numpy中的格式。
在这里插入图片描述
2.tensor的一些基本运算
2.1简单的数学运算

import torch
import numpy as np

#abs 绝对值
data=[-1,2,1,-2]
tensor=torch.FloatTensor(data) #32bit float

print(
    '\nabs',
    '\nnumpy',np.abs(data),      #[1 2 1 2]
    '\ntorch',torch.abs(tensor)  #[1 2 1 2]
    )

类似的还有 正弦函数sin,平均值mean。

2.2矩阵运算

import torch
import numpy as np

#矩阵相乘
data=[[1,2],[3,4]]
tensor=torch.FloatTensor(data) #32bit float

print(
    '\nabs',
    '\nnumpy',np.matmul(data,data),      
    '\ntorch',torch.mm(tensor, tensor) 
    )

也可以用data.dot(data)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值