1.numpy的array和torch表示的对比
import torch
import numpy as np
np_data=np.arange(6).reshape((2,3))
torch_data=torch.from_numpy(np_data)
tensor2array=torch_data.numpy()
print(
'\nnumpy',np_data,
'\ntorch',torch_data,
'\ntensor2array',tensor2array,
)
tensor2array=torch_data.numpy() 让其以变为numpy中的格式。
2.tensor的一些基本运算
2.1简单的数学运算
import torch
import numpy as np
#abs 绝对值
data=[-1,2,1,-2]
tensor=torch.FloatTensor(data) #32bit float
print(
'\nabs',
'\nnumpy',np.abs(data), #[1 2 1 2]
'\ntorch',torch.abs(tensor) #[1 2 1 2]
)
类似的还有 正弦函数sin,平均值mean。
2.2矩阵运算
import torch
import numpy as np
#矩阵相乘
data=[[1,2],[3,4]]
tensor=torch.FloatTensor(data) #32bit float
print(
'\nabs',
'\nnumpy',np.matmul(data,data),
'\ntorch',torch.mm(tensor, tensor)
)
也可以用data.dot(data)