基于arcgis的遥感深度学习数据集制作

本文详细介绍了如何使用ArcGIS工具,从添加影像文件到创建shp和label文件,以及制作对应的数据集,包括面矢量、属性设置和批量赋值,最后展示了如何裁剪和验证数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于很多时候,我们在研究过程中往往需要根据实际情况使用自己的影像数据来提取目标物,如果没有合适的公开数据集的话,为了满足实际需要,我们就需要制作符合自己要求的数据集。 今天我们就根据实际情况来详细讲解如何利用arcgis,来制作属于自己的数据集。

制作目标shp文件

  • 首先我们在arcgis中添加我们的影像文件。 alt
  • 然后创建一个shp文件。注意坐标系与我们的影像文件保持一致。在创建过程中注意选择面矢量。 alt alt alt alt
  • 创建完成后,我们在目录表右键新创建的shp文件,打开属性表。 alt
  • 此时的属性表中没有多余的属性。我们点击右上角的选项,选择add field,添加属性。属性名称为"class_id",类型默认为短整型。 alt alt
<think>好的,我现在需要帮助用户查找关于ArcGIS Pro在深度学习数据集方面的使用教程和下载资源。首先,用户提到的引用内容是关于使用ArcGIS Pro批量制作深度学习训练文件,特别是遥感数据。这可能意味着用户对处理遥感图像感兴趣,需要知道如何准备数据集。 用户的需求分为两部分:使用教程和下载资源。我应该先考虑官方资源,因为通常最可靠。ArcGIS Pro的官方文档和Esri的培训资源应该是最权威的。例如,Esri的官方网站可能有详细的教程和指南,特别是关于深度学习工具包的部分。 接下来,用户可能需要具体的教程步骤,比如如何准备数据、标注数据、使用工具进行训练等。需要分步骤说明,并确保使用正确的中文术语。例如,数据预处理、样本标注、模型训练等步骤。 关于数据集下载,用户可能需要公开的遥感数据集。我应该列举一些常见的资源,比如UC Merced Land Use Dataset、SpaceNet、Sentinel-2卫星数据等。同时,要提到如何通过ArcGIS Pro直接访问这些数据,比如通过Living Atlas of the World。 另外,用户可能遇到环境配置的问题,比如GPU支持和依赖库的安装。需要提及ArcGIS Pro的系统要求和安装深度学习框架的步骤,例如安装PyTorch或TensorFlow。 还需要考虑用户可能的后续问题,比如性能优化、处理大数据集的方法,或者与其他工具的集成。因此,在相关问题部分可以加入这些内容。 最后,确保回答结构清晰,分点说明教程和资源,并附上相关引用。同时,检查所有链接是否有效,格式是否正确,使用中文回答,并且数学表达式(如果有的话)使用正确的LaTeX格式,不过在这个问题中可能涉及较少数学内容,但如果有的话要注意格式。</think># ArcGIS Pro深度学习数据集使用教程与资源指南 ### 一、使用教程资源 1. **官方深度学习工具包文档** ArcGIS Pro内置的`arcgis.learn`模块提供完整工作流支持,访问路径: `地理处理面板 > 工具箱 > 深度学习工具` 包含数据标注、样本导出、模型训练等9大类工具[^1]。关键步骤: - 数据预处理:使用`准备训练数据`工具生成芯片数据集 - 标注规范:支持PASCAL VOC格式与COCO格式 - 模型配置:通过`Train Deep Learning Model`设置epochs/batch_size参数 2. **Esri官方培训课程** 推荐以下学习路径(需免费注册Esri账户): - [《使用深度学习进行影像分析》](https://www.esri.com/training/catalog/5d76dcf7e9ccda09bef51294/deep-learning-for-imagery-analysis/) - [《遥感深度学习实战》](https://pro.arcgis.com/zh-cn/pro-app/latest/tool-reference/image-analyst/deep-learning-in-arcgis-pro.htm) 3. **GitHub实战案例** Esri官方维护的[arcgis-python-api样本库](https://github.com/Esri/arcgis-python-api/tree/master/samples)包含: - 建筑物提取(U-Net) - 土地分类(Mask R-CNN) - 目标检测(Faster R-CNN) ```python # 示例代码片段 - 模型初始化 from arcgis.learn import UnetClassifier model = UnetClassifier(data, backbone='resnet34') ``` ### 二、数据集获取渠道 1. **内置数据接口** 通过`Living Atlas of the World`直接访问: - 高分辨率卫星图:WorldView/Venμs - 高程数据:ASTER GDEM - 气象数据:MODIS温度数据集 2. **开放遥感数据集** | 数据集名称 | 内容 | 分辨率 | 访问地址 | |-----------|------|--------|----------| | SpaceNet | 城市建筑轮廓 | 0.3m | [spacenet.ai](https://spacenet.ai/) | | UC Merced | 21类土地利用 | 0.3m | [weegee.vision.ucmerced.edu](http://weegee.vision.ucmerced.edu/datasets/landuse.html) | | Sentinel-2 | 多光谱影像 | 10m | [ESA Copernicus](https://scihub.copernicus.eu/) | 3. **行业专项数据集** - **农业**:CropHarvest(全球作物类型) - **灾害**:xBD(灾前/灾后建筑损伤) - **生态**:ForestNet(全球森林变化) ### 三、环境配置建议 1. 硬件要求: - 最低配置:NVIDIA GTX 1060 (4GB显存) - 推荐配置:RTX 3080 (10GB显存) 2. 依赖库安装: ```powershell conda install -c esri deep-learning-essentials ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DataAssassin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值