Ubuntu18.04深度学习环境搭建图文教程(在Anaconda环境中配置cuda+cudann+Pytorch,Pycharm)

本教程详细介绍了如何在Ubuntu18.04上搭建深度学习环境,包括更换软件源、安装Nvidia显卡驱动、通过Anaconda安装CUDA和CUDNN、设置PyTorch,并在PyCharm中配置Anaconda环境。整个过程无需禁用nouveau,确保了GPU支持和高效下载速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装前的准备

换源

打开Ubuntu18.04中的软件和更新——>下载自,选择阿里云的源。
注: 这一步非常重要哦,会使后面的下载快很多!
在这里插入图片描述

Nvidia显卡驱动

查看显卡型号

  1. 终端输入:ubuntu-drivers devices,显示可用驱动版本
    在这里插入图片描述显示推荐版本465。

安装Nvidia显卡驱动

  1. 在“软件与更新”——“附加驱动”中,安装Nvidia驱动,这里我选择的是460。
    在这里插入图片描述注:(有些教程里说,需要禁用nouveau)其实完全不需要!用上面的方法安装Nvidia驱动,会自动禁用nouveau。如何验证呢?我们可以在安装完成后,在终端用lsmod | grep nouveau命令查看,若没有任何输出,可以发现已经自动禁用了。

在这里插入图片描述

  1. 终端输入nvidia-smi,显示下面信息,可以看到刚刚安装的驱动版本,则证明Nvidia驱动安装成功。
    在这里插入图片描述

安装Anaconda

:不用在系统中安装cuda和cudann哦!如果只是简单的使用,可以在Anaconda中安装cuda,超方便!

下载Anaconda安装包

  1. 官网下载Anaconda安装包
    在这里插入图片描述
  2. 安装包在下载文件夹,在该文件夹打开终端,运行bash Anaconda3-2021.05-Linux-x86_64.sh,bash后面换成自己的文件夹名字,然后一路yes+回车,(后面会让选择许可证、安装路径),安装完成。
    在这里插入图片描述

添加快捷方式

  1. 在终端运行sudo touch anaconda-navigator.desktop,创建桌面快捷方式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值