windows使用conda命令安装tensorflow-gpu,并查看程序是否调用GPU

这篇博客介绍了如何在Windows上通过Anaconda创建环境并安装tensorflow-gpu,以及在Pycharm中配置该环境,并通过代码验证是否成功调用了GPU进行深度学习训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在进行深度学习训练时,会经常使用tensorflow搭建网络,下面详细介绍如何使用Anaconda搭建环境,以及在pycharm中调用环境,查看是否使用GPU进行训练。


提示:以下是本篇文章正文内容,下面案例可供参考

一、安装Anaconda和Pycharm

1.Anaconda

官网下载:https://www.anaconda.com/ 选择适合自己的版本。
如果官网下载速度慢,可以从清华大学镜像源进行下载(但是镜像源可能没有anaconda的最新版本):https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

2.Pycharm

官网下载:https://www.jetbrains.com/pycharm/download/#section=windows
Professional版本的要收费,我自己选择的是Community版本的,功能也挺全,做深度学习完全够用

下载后的安装就不多赘述了

二、Anaconda环境搭建

1.创建并激活进入环境

在搭建环境前,一定要提前查好python、tensorflow、自己电脑显卡支持的cuda三者的版本匹配!先决定好自己要安装的版本!版本匹配直接在网页上搜索就好。

电脑显卡支持的cuda版本查看方式:依次点击 NVIDIA控制面板-系统信息(在左下角)-组件。一般在组件的3D设置里会显示NVIDIA CUDA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值