4. Median of Two Sorted Arrays

本文介绍了一种高效算法,用于计算两个已排序数组合并后的中位数,采用二分查找法确保时间复杂度不超过O(log(m+n))。通过设定索引i和j,实现了对两个数组的有效划分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

description:

有两个排好顺序的数组,且数组大小已知,找这两个数组(合并后)的中位数。

要求时间复杂度不超过O(log(m+n)).两数组不同时为空.

thought and method:

binary-search 利用二分查找的思想来降低时间复杂度

solution:

分析:我们假设这两个数组分别为num1和nums2,大小分别为m,n.

我们知道中位数的定义:

当数的个数为奇数时,其为最中间的那个.

例如对nums1:median=nums1[(m+1)/2]; 

当数的个数为偶数时,其为中间两数的算法平均数.

例如对nums2:median=(nums2[n/2]+nums2[n/2+1])/2.

现在对两个排列好的数组我们怎样做来求其中位数呢?

很自然的可以想到将两个数组和为一个数组,然后转化为一个数组求中位数的问题,但显然这样不能满足题目对时间复杂度的要求。

那么,该怎么做呢?

我们已经知道中位数是最中间的数 其实它把数组按大小分为了两部分:

由此得到启发:可以倒着找一个数,使得它满足中位数的要求。

事实上,无论这个数在数组nums1中还是在nums2中或是某两数的平均数,都会把两个数组分别分成两部分,基于这一点,我们可以通过找两数组的索引 index来实现——不妨定义为i,j

                        left                                                                  right

nums1[0]  nums1[1] …nums1[i-1]      nums1[i]    nums1[i+1]…nums1[m-1]

nums2[0]  nums2[1] …nums2[j-1]      nums2[j]    nums2[j+1]…nums2[n-1]

首先 要满足  len(left)==len(right)  即:i+j==m+n-i-j     j=(m+n)/2-i

这里有一点小疑问:如果m+n为奇数呢?上述条件显然不能满足!莫急!!

事实上,若m+n为奇数,可以令len(left)=len(right)+1    后面会意识到可以统一处理这两种情况。

奇数时,i+j=m-i+n-j+1     j=(m+n+1)/2-i   我们意识到这并不影响j的取值 

所以不妨令j=(m+n+1)/2-i 

其次 还必须满足 max(left)<=min(right)

则   median=(max(left)+min(right))/2

最后呢还要防止数组越界哦

下面结合伪代码讲述二分搜索的思路:

set imin=0,imax=m,

for i=(imin+imax)/2,j=(m+n+1)/2-i //which make sure the first  condition

if(nums2[j-1]<=nums1[i] and nums1[i-1]<=nums2[j])

means the i is suitable stop

elif nums2[j-1]>nums1[i]

means i is too small   we need to increase i 

elif nums1[i-1]>nums2[j]

means i is too big  we need to decrease i

after the loop 

if  m+n is odd  then:

        median=max(left)

if  m+n is even then:

         median=(max(left)+min(right))/2

以下是C++ solution:

class Solution {
    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        if (m > n) { 
            return findMedianSortedArrays(B,A); // 保证 m <= n
        }
        int iMin = 0, iMax = m;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = (m + n + 1) / 2 - i;
            if (j != 0 && i != m && B[j-1] > A[i]){ // i 需要增大
                iMin = i + 1; 
            }
            else if (i != 0 && j != n && A[i-1] > B[j]) { // i 需要减小
                iMax = i - 1; 
            }
            else { // 达到要求,并且将边界条件列出来单独考虑
                int maxLeft = 0;
                if (i == 0) { maxLeft = B[j-1]; }
                else if (j == 0) { maxLeft = A[i-1]; }
                else { maxLeft = Math.max(A[i-1], B[j-1]); }
                if ( (m + n) % 2 == 1 ) { return maxLeft; }
                             // 奇数的话不需要考虑右半部分

                int minRight = 0;
                if (i == m) { minRight = B[j]; }
                else if (j == n) { minRight = A[i]; }
                else { minRight = Math.min(B[j], A[i]); }

                return (maxLeft + minRight) / 2.0; //如果是偶数的话返回结果
            }
        }
        return 0.0;
    }
}

参考链接:

https://leetcode.wang/leetCode-4-Median-of-Two-Sorted-Arrays.html

这个人讲的比较透彻感觉受益匪浅!

题目描述是关于寻找两个已排序数组 `nums1` 和 `nums2` 的合并后的中位数。这两个数组分别包含 `m` 和 `n` 个元素。要解决这个问题,首先我们需要合并这两个数组并保持有序,然后根据数组的总大小决定取中间值的方式。 1. 合并两个数组:由于数组是有序的,我们可以使用双指针法,一个指向 `nums1` 的起始位置,另一个指向 `nums2` 的起始位置。比较两个指针所指元素的大小,将较小的那个放入一个新的合并数组中,同时移动对应指针。直到其中一个数组遍历完毕,再将另一个数组剩余的部分直接复制到合并数组中。 2. 计算中位数:如果合并数组的长度为奇数,则中位数就是最中间的那个元素;如果长度为偶数,则中位数是中间两个元素的平均值。我们可以通过检查数组长度的奇偶性来确定这一点。 下面是Python的一个基本解决方案: ```python def findMedianSortedArrays(nums1, nums2): merged = [] i, j = 0, 0 # Merge both arrays while i < len(nums1) and j < len(nums2): if nums1[i] < nums2[j]: merged.append(nums1[i]) i += 1 else: merged.append(nums2[j]) j += 1 # Append remaining elements from longer array while i < len(nums1): merged.append(nums1[i]) i += 1 while j < len(nums2): merged.append(nums2[j]) j += 1 # Calculate median length = len(merged) mid = length // 2 if length % 2 == 0: # If even, return average of middle two elements return (merged[mid - 1] + merged[mid]) / 2.0 else: # If odd, return middle element return merged[mid] ``` 这个函数返回的是两个数组合并后的中位数。注意,这里假设数组 `nums1` 和 `nums2` 都是非空的,并且已经按照升序排列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值