TensorFlow2.0环境的配置

本文详细介绍了如何在Windows 10环境下安装Anaconda3,创建TF2.1环境,并通过实例演示了如何使用pip安装TensorFlow 2.1,以及在PyCharm中验证GPU支持。重点在于解决CUDA和CUDNN安装问题,适合初学者快速入门TensorFlow2.0学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow2.0环境的配置
自学视频:【北京大学】Tensorflow2.0
在这里插入图片描述

一、安装Anaconda3

官网下载即可
在这里插入图片描述默认方式安装
在这里插入图片描述

在这里插入图片描述
安装完后 将anaconda3加入环境变量

2、TensorFlow的安装

2.1 创建TF2.1环境
在这里插入图片描述在这里插入图片描述conda create -n TF2.1 python=3.7 选择y表示同意安装相关软件包
在这里插入图片描述2.2 windows10安装cuda10.1以及cudnn
点击链接 上次写过。
电脑上要是没有英伟达显卡的跳过2.2 直接进入2.3

2.3 安装tensorflow2.1
我pip安装时进行了换源,不然下载的好慢!

pip install tensorflow==2.1 -i https://pypi.douban.com/simple/

进入python 安装成功后 截图如下:
在这里插入图片描述

三、Pycharm新建工程,写入代码进行验证

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述文件名test.py
测试代码如下:

import tensorflow as tf

tensorflow_version = tf.__version__
gpu_available = tf.test.is_gpu_available()

print("tensorflow version", tensorflow_version, "\tGPU available", gpu_available)

a = tf.constant([1.0, 2.0], name="a")
b = tf.constant([1.0, 2.0], name="b")
result = tf.add(a, b, name="add")
print(result)

这几行代码运行的时候会卡,看显卡的好坏,我显卡很渣所以跑了十几分钟才出结果。大家可以耐心等等 或者换电脑hhhhh
卡在Adding visible gpu devices: 0这里是正常的,不要慌吃口药
运行截图:
在这里插入图片描述
下面出现这个代表
大功告成 可以开始下一步的学习啦!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值