Codeforces383 E. Vowels(Sosdp)

探讨了在给定字符串集合中,通过自定义元音字符集计算所有可能字符集权值的异或和的问题。介绍了如何通过计算不正确字符串个数来优化问题求解,并展示了具体的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给定n个只含3个字符的字符串(只含字母表前24个字符),
现在你可以自定义元音字符集(那么元音字符集有2^24种),
如果一个字符串中含有至少一个元音字符,那么称为这个字符串是正确的,
对于每种元音字符集,权值为正确串个数的平方
现在要求计算所有字符集权值的异或和。

数据范围:n<=1e4

解法:
计算每种元音字符集的正确串个数,可以改为计算不正确的个数
令d[i]表示x&i=x的x的个数,即i的子集个数,子集Sosdp一下
最后枚举所有非元音字符集状态i,对答案的贡献就是(n-d[i])*(n-d[i])
code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=4e6+5;
int d[(1<<24)+5];
char s[5];
int n;
signed main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%s",s+1);
        int num=0;
        for(int i=1;i<=3;i++){
            num|=(1<<(s[i]-'a'));
        }
        d[num]++;
    }
    for(int i=0;i<24;i++){
        for(int j=(1<<24)-1;j>=0;j--){
            if(j>>i&1){//
                d[j]+=d[j^(1<<i)];
            }
        }
    }
    int ans=0;
    for(int i=0;i<(1<<24);i++){
        ans^=(n-d[i])*(n-d[i]);
    }
    cout<<ans<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值