完全立方公式:
完全立方公式包括完全立方和公式和完全立方差公式
(a±b)3=a3±3a2b+3ab2±b3(a±b)^3=a^3±3a^2b+3ab^2±b^3(a±b)3=a3±3a2b+3ab2±b3
完全立方和公式:
(a+b)3=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b)=a3+3a2b+3ab2+b3(a+b)^3=(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3+3a^2b + 3ab^2+ b^3(a+b)3=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b)=a3+3a2b+3ab2+b3
完全立方差公式:
(a−b)³=(a−b)(a−b)(a−b)=(a²−2ab+b²)(a−b)=a³−3a²b+3ab²−b³(a-b)³=(a-b)(a-b)(a-b)=(a²-2ab+b²)(a-b)=a³-3a²b+3ab²-b³(a−b)³=(a−b)(a−b)(a−b)=(a²−2ab+b²)(a−b)=a³−3a²b+3ab²−b³
立方差公式:
a3+b3=(a+b)(a2−ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)
立方和公式:
a3−b3=(a−b)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
自然数前n项立方和
13+23+...n3=[n∗(n+1)2]2=(1+2+..n)21^3+2^3+...n^3=[\frac{n*(n+1)}{2}]^2=(1+2+..n)^213+23+...n3=[2n∗(n+1)]2=(1+2+..n)2