Codeforces G2. Permutation Problem (Hard Version)(数论,复杂度分析,cf2500)

题意:
解法:
g[i]=gcd(a[i],i)
x[i]=a[i]/g
y[i]=i/g

(a[i]*a[j])%(i*j)=0
从质因子的角度上看,就是要满足:
对于(i*j)中的每个质因子p,设指数为k_i,
都有(a[i]*a[j])中质因子p的指数>k_i.

式子中i和j耦合到一起了,我们拆开考虑:
对于(a[i],i), a[i]能消除i中gcd(a[i],i)部分质因子, 
剩下的i/gcd(a[i],i)部分只能又a[j]消除.

设g=gcd(a[i],i)
x[i]=a[i]/g,
y[i]=i/g.

那么问题可以变为
可以转化为有多少对(i,j), 满足:
  x[i]%y[j]==0
  x[j]%y[i]==0
同时i<j.

我们可以枚举yi=[1,n],然后枚举xj=[k*yi], 这里xj是yi的倍数.
随后我们就需要找出y[i]==yi, x[j]==xj的位置i和j, 
然后计算有多少对(i,j)满足x[i]%y[j]==0.

我们可以预处理xpos[xi]表示x[i]==xi的所有i的位置, 以及预处理ypos[].
在枚举yi和xj后,然后遍历x[j]==xj的位置j,令cnt[y[j]]++,即记录yj出现的次数.
最后遍历y[i]==yi的位置i,枚举x[i]的因子,ans+=cnt[y[j]]即可.

这样会有一些重复计算:
1. 会出现(i,i)匹配的情况
2. 会出现(i,j), (j,i)匹配的情况
因为这题中(i,j)满足条件,则(j,i)也一定满足

需要减去1情况的数量,然后将ans除以2.

算法复杂度为O(n*log)

ps:
这里的枚举用到了很多复杂度的技巧.
详情看code.
Code:
#include <bits/stdc++.h>
using namespace std;
#define X first
#define Y second
#define int long long
#define PI pair<int, int>
const int maxm=5e5+5;
const int mod=998244353;
int n;
int a[maxm];
int x[maxm];
int y[maxm];
vector<int>xpos[maxm];
vector<int>ypos[maxm];
vector<int>fac[maxm];
int cnt[maxm];
int gcd(int a,int b){
  return b==0?a:gcd(b,a%b);
}
void solve(){
  cin>>n;
  for(int i=1;i<=n;i++){
    cin>>a[i];
    int g=gcd(a[i],i);
    x[i]=a[i]/g;
    y[i]=i/g;
  }
  for(int i=1;i<=n;i++){
    xpos[i].clear();
    ypos[i].clear();
  }
  for(int i=1;i<=n;i++){
    xpos[x[i]].push_back(i);
    ypos[y[i]].push_back(i);
  }

  for(int i=1;i<=n;i++){
    fac[i].clear();
  }
  for(int i=1;i<=n;i++){
    for(int j=i;j<=n;j+=i){
      fac[j].push_back(i);
    }
  }
 
  int ans=0;
  // 枚举yi
  for(int i=1;i<=n;i++)cnt[i]=0;
  for(int yi=1;yi<=n;yi++){
    // 枚举xj=k*yi
    // 计算有多少x[i]%y[j]==0
    // 先更新y[j]的数量
    
    for(int xj=yi;xj<=n;xj+=yi){
      // 每个xj只会被因子枚举到
      // 则每个j会被枚举到xj因子个数次
      // 分析一下这部分的复杂度:
      // 由于xj=a[j]/g, 即xj是a[j]的因子, 所以d(xj)<=d(a[j])
      // 因此sum(d(xj))<=sum(d(a[j]))
      // 由于a[]是排列, a[i]是唯一的
      // 所以sum(d(a[j]))=O(n*log).
      // 因此这部分的复杂度一定<=O(n*log)
      for(int j:xpos[xj]){
        cnt[y[j]]++;
      }
    }
    // 每个yi只会被枚举到一次, 因此这部分的的复杂度是O(n*log)
    for(int i:ypos[yi]){
      // 有多少个y[j]是x[i]的因子
      for(int di:fac[x[i]]){
        ans+=cnt[di];
      }
    }
    // 消除y[j]的影响
    for(int xj=yi;xj<=n;xj+=yi){
      for(int j:xpos[xj]){
        cnt[y[j]]--;
      }
    }
  }
  // 自匹配的情况
  for(int i=1;i<=n;i++){
    if(x[i]%y[i]==0)ans--;
  }
  // (i,j)满足则(j,i)也一定满足
  // 而题目要求输出的是有序对数量.
  // 所以这里要除2
  ans/=2;
  cout<<ans<<endl;
}
signed main() {
#define MULTI_CASE
  ios::sync_with_stdio(0);
  cin.tie(0);
#ifndef ONLINE_JUDGE
  freopen("../in.txt", "r", stdin);
  freopen("../out.txt", "w", stdout);
#endif
#ifdef MULTI_CASE
  int T;
  cin >> T;
  while (T--)
#endif
    solve();
  return 0;
}

### Codeforces Div.2 比赛难度介绍 Codeforces Div.2 比赛主要面向的是具有基础编程技能到中级水平的选手。这类比赛通常吸引了大量来自全球不同背景的参赛者,包括大学生、高中生以及一些专业人士。 #### 参加资格 为了参加 Div.2 比赛,选手的评级应不超过 2099 分[^1]。这意味着该级别的竞赛适合那些已经掌握了一定算法知识并能熟练运用至少一种编程语言的人群参与挑战。 #### 题目设置 每场 Div.2 比赛一般会提供五至七道题目,在某些特殊情况下可能会更多或更少。这些题目按照预计解决难度递增排列: - **简单题(A, B 类型)**: 主要测试基本的数据结构操作和常见算法的应用能力;例如数组处理、字符串匹配等。 - **中等偏难题(C, D 类型)**: 开始涉及较为复杂的逻辑推理能力和特定领域内的高级技巧;比如图论中的最短路径计算或是动态规划入门应用实例。 - **高难度题(E及以上类型)**: 对于这些问题,则更加侧重考察深入理解复杂概念的能力,并能够灵活组合多种方法来解决问题;这往往需要较强的创造力与丰富的实践经验支持。 对于新手来说,建议先专注于理解和练习前几类较容易的问题,随着经验积累和技术提升再逐步尝试更高层次的任务。 ```cpp // 示例代码展示如何判断一个数是否为偶数 #include <iostream> using namespace std; bool is_even(int num){ return num % 2 == 0; } int main(){ int number = 4; // 测试数据 if(is_even(number)){ cout << "The given number is even."; }else{ cout << "The given number is odd."; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值