题意:
解法:
g[i]=gcd(a[i],i)
x[i]=a[i]/g
y[i]=i/g
(a[i]*a[j])%(i*j)=0
从质因子的角度上看,就是要满足:
对于(i*j)中的每个质因子p,设指数为k_i,
都有(a[i]*a[j])中质因子p的指数>k_i.
式子中i和j耦合到一起了,我们拆开考虑:
对于(a[i],i), a[i]能消除i中gcd(a[i],i)部分质因子,
剩下的i/gcd(a[i],i)部分只能又a[j]消除.
设g=gcd(a[i],i)
x[i]=a[i]/g,
y[i]=i/g.
那么问题可以变为
可以转化为有多少对(i,j), 满足:
x[i]%y[j]==0
x[j]%y[i]==0
同时i<j.
我们可以枚举yi=[1,n],然后枚举xj=[k*yi], 这里xj是yi的倍数.
随后我们就需要找出y[i]==yi, x[j]==xj的位置i和j,
然后计算有多少对(i,j)满足x[i]%y[j]==0.
我们可以预处理xpos[xi]表示x[i]==xi的所有i的位置, 以及预处理ypos[].
在枚举yi和xj后,然后遍历x[j]==xj的位置j,令cnt[y[j]]++,即记录yj出现的次数.
最后遍历y[i]==yi的位置i,枚举x[i]的因子,ans+=cnt[y[j]]即可.
这样会有一些重复计算:
1. 会出现(i,i)匹配的情况
2. 会出现(i,j), (j,i)匹配的情况
因为这题中(i,j)满足条件,则(j,i)也一定满足
需要减去1情况的数量,然后将ans除以2.
算法复杂度为O(n*log)
ps:
这里的枚举用到了很多复杂度的技巧.
详情看code.
Code:
#include <bits/stdc++.h>
using namespace std;
#define X first
#define Y second
#define int long long
#define PI pair<int, int>
const int maxm=5e5+5;
const int mod=998244353;
int n;
int a[maxm];
int x[maxm];
int y[maxm];
vector<int>xpos[maxm];
vector<int>ypos[maxm];
vector<int>fac[maxm];
int cnt[maxm];
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
void solve(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
int g=gcd(a[i],i);
x[i]=a[i]/g;
y[i]=i/g;
}
for(int i=1;i<=n;i++){
xpos[i].clear();
ypos[i].clear();
}
for(int i=1;i<=n;i++){
xpos[x[i]].push_back(i);
ypos[y[i]].push_back(i);
}
for(int i=1;i<=n;i++){
fac[i].clear();
}
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j+=i){
fac[j].push_back(i);
}
}
int ans=0;
for(int i=1;i<=n;i++)cnt[i]=0;
for(int yi=1;yi<=n;yi++){
for(int xj=yi;xj<=n;xj+=yi){
for(int j:xpos[xj]){
cnt[y[j]]++;
}
}
for(int i:ypos[yi]){
for(int di:fac[x[i]]){
ans+=cnt[di];
}
}
for(int xj=yi;xj<=n;xj+=yi){
for(int j:xpos[xj]){
cnt[y[j]]--;
}
}
}
for(int i=1;i<=n;i++){
if(x[i]%y[i]==0)ans--;
}
ans/=2;
cout<<ans<<endl;
}
signed main() {
#define MULTI_CASE
ios::sync_with_stdio(0);
cin.tie(0);
#ifndef ONLINE_JUDGE
freopen("../in.txt", "r", stdin);
freopen("../out.txt", "w", stdout);
#endif
#ifdef MULTI_CASE
int T;
cin >> T;
while (T--)
#endif
solve();
return 0;
}