transformer进行文本分析的模型代码

博客介绍了使用Transformer架构的PyTorch神经网络模型代码。先阐述Transformer基于注意力机制,在自然语言处理广泛应用。接着逐步解析代码,包括类定义、构造函数各参数含义,以及嵌入层、Transformer层、线性层设置和前向方法流程,该模型可用于语言建模等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这段代码定义了一个使用Transformer架构的PyTorch神经网络模型。Transformer模型是一种基于注意力机制的神经网络架构,最初由Vaswani等人在论文“Attention is All You Need”中提出。它在自然语言处理任务中被广泛应用,例如机器翻译。

让我们逐步解释这段代码:

类定义:

class TransformerModel(nn.Module):

这定义了一个名为TransformerModel的新类,它是nn.Module的子类。在PyTorch中,所有神经网络模型都是nn.Module的子类。

构造函数(__init__方法):

def __init__(self, vocab_size, embedding_dim, nhead, hidden_dim
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LinlyZhai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值