给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):
- 0 <= a, b, c, d < n
- a、b、c 和 d 互不相同
- nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
示例 1:
输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
示例 2:
输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]
提示:
1 <= nums.length <= 200
-109 <= nums[i] <= 109
-109 <= target <= 109
一、回溯
看到这道题时我首先想到的是回溯法来解
class Solution {
public:
vector<vector<int>> ans;
vector<int> t;
int Sum(vector<int>& t){
int sum = 0;
for(int i = 0; i < t.size(); i++){
sum += t[i];
}
return sum;
}
void backtrack(vector<int>& nums, int target, vector<bool>& used,int start){
if(t.size() == 4&&Sum(t) == target){
ans.emplace_back(t);
return;
}
for(int i = start; i < nums.size(); i++){
if(i>0 && nums[i] == nums[i-1] && used[i-1] == false){
continue;
}
if(used[i] ==false){
t.emplace_back(nums[i]);
used[i] = true;
backtrack(nums,target,used,i+1);
t.pop_back();
used[i] = false;
}
}
}
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(nums.begin(), nums.end());
vector<bool> used(200,false);
backtrack(nums,target,used,0);
return ans;
}
};
在第218个测试是,结果果不其然运行超时
时间复杂度为O(4^n)
二、双指针
于是进行了改进,采用双指针来解
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(nums.begin(), nums.end());
vector<vector<int>> ans;
for(int i = 0; i < nums.size(); i++){
if(i > 0 && nums[i] == nums[i-1])
continue;
for(int j = i+1; j < nums.size(); j++){
if(j > i+1 && nums[j] == nums[j-1])
continue;
int left = j+1, right = nums.size()-1;
while(left < right){
//注意这里不能让nums[i] + nums[j]+nums[left]+nums[right],因为相加会超过int范围
if(nums[i] + nums[j] == target-(nums[left]+nums[right])){
ans.emplace_back(vector<int>{nums[i],nums[j],nums[left],nums[right]});
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
left++;
right--;
}
if(nums[i] + nums[j] > target-(nums[left]+nums[right]))
right--;
if(nums[i] + nums[j] < target-(nums[left]+nums[right]))
left++;
}
}
}
return ans;
}
};
时间复杂度O(n^3)