【3D 入门-6】大白话解释 SDF(Signed Distance Field) 和 Marching Cube 算法

『AI先锋杯·14天征文挑战第5期』 10w+人浏览 192人参与

在这里插入图片描述

  • 先有 SDF 描述形状内外(上图右侧白色到黑色的坐标),再由 Marching Cube (上图中的红色多面体是由一个个 cube 组成的)生成网格
  • 图片来源:https://www.youtube.com/watch?v=M3iI2l0ltbE
一、什么是SDF?(Signed Distance Field,有向距离场)

1. 基础概念
SDF是一种描述空间中每个点与某个形状距离的数学工具。简单来说:

  • 对于空间中的任意一点,SDF会计算它到某个物体表面的最短距离,并且用“正负号”表示点在物体的内部还是外部:
    • 如果点在物体外部,距离为正数
    • 如果点在物体内部,距离为负数
    • 如果点正好在物体表面上,距离为0

举个例子
比如一个半径为1的球体,球心在原点(0,0,0)。对于空间中的点P(x,y,z),它的SDF值就是:
S D F ( P ) = x 2 + y 2 + z 2 − 1 SDF(P) = \sqrt{x^2 + y^2 + z^2} - 1 SDF(P)=x2+y2+z2 1

  • 当P在球外时(比如(2,0,0)),距离是2-1=1(正数);
  • 当P在球内时(比如(0.5,0,0)),距离是0.5-1=-0.5(负数);
  • 当P在球面上时(比如(1,0,0)),距离是0(表面)。

2. 为什么SDF很重要?

  • 简洁描述形状:用数学公式就能表示复杂形状,比如球体、立方体甚至更复杂的物体。
  • 方便计算:通过SDF可以快速判断点与物体的位置关系,这在3D建模、游戏渲染、物理模拟中很常用。
二、什么是Marching Cube算法?(移动立方体算法)

1. 算法的目标
Marching Cube算法的核心是:将SDF表示的形状,转换为计算机能显示的三角形网格(3D模型的基本组成单元)

2. 工作原理(类比“切豆腐”)
假设我们有一块“豆腐”(代表3D空间),里面藏着一个用SDF描述的形状。算法的步骤如下:

  • 第一步:划分网格
    将3D空间分成许多小立方体(像切豆腐一样切成小方块),每个小立方体的顶点都有一个SDF值(正或负)。

  • 第二步:判断表面位置
    对于每个小立方体,观察它的8个顶点的SDF值:

    • 如果顶点的SDF是正数,说明它在形状外部;
    • 如果是负数,说明在形状内部。
      当相邻顶点的SDF值一正一负时,说明形状的表面穿过这两个顶点之间的边,需要计算表面与边的交点。
  • 第三步:生成三角形
    根据小立方体中顶点的正负分布,找到所有表面与边的交点,然后将这些交点连接成三角形。这些三角形拼接起来,就形成了形状的表面网格。

举个例子
如果一个小立方体的4个顶点在形状内部(SDF负),4个在外部(SDF正),那么它的表面可能穿过某些边,算法会计算这些边上的交点,并把交点连成三角形,覆盖形状的表面。

三、两者的关系:SDF + Marching Cube = 3D模型生成
  • SDF就像“蓝图”,用数学方式描述形状的内外;
  • Marching Cube就像“施工队”,根据蓝图(SDF的正负值)把形状“雕刻”出来,变成计算机能显示的三角形网格。
四、生活中的类比
  • SDF:像地图上的等高线,每个点的海拔(正负)表示它在山的内部还是外部。
  • Marching Cube:像用积木搭建城堡,根据每个积木块的位置和形状,决定哪些积木需要被用来搭建表面,最终组成城堡的样子。
五、为什么这两个概念很重要?
  • SDF在游戏中常用于“碰撞检测”(比如角色是否碰到墙壁),或生成动态形状(如水流、烟雾);
  • Marching Cube是3D建模中生成复杂曲面的经典算法,比如医学图像(CT扫描)重建人体器官,或游戏中生成地形和物体模型。

如果想进一步理解,可以想象用无数小方块“包裹”一个苹果,每个方块根据苹果的形状(SDF)决定如何切割表面,最终用三角形拼成苹果的3D模型——这就是Marching Cube在做的事情~

### 机器学习与深度学习的概念及区别 #### 基本概念 机器学习是一种通过算法统计模型让计算机利用经验自动改进性能的技术[^2]。它的核心目标是从数据中提取模式并进行预测或决策。而深度学习则是机器学习的一个子集,专注于构建多层神经网络结构(通常称为深层神经网络),以模拟人类大脑的工作方式[^1]。 #### 流程差异 传统机器学习方法依赖于特征工程,即人工设计特征来表示输入数据。这些特征随后被传递给分类器或其他类型的模型来进行训练测试。相比之下,深度学习采用端到端的学习策略,在此过程中,原始数据直接送入神经网络内部完成特征抽取以及最终的任务求解过程。 #### 应用场景对比 由于计算资源需求较高且需要大量标注样本支持,因此目前来看,深度学习更适合处理复杂高维度的数据比如图片、音频文件或者视频流等多媒体形式的内容;而对于一些低维数值型变量构成的小规模问题,则可能更倾向于选择经典ML技术方案因为它们往往效率更高而且参数调整起来也更加容易掌控。 #### 可解释性分析 值得注意的是,尽管两者都能实现智能化功能开发目的但各有侧重之处——前者因逻辑清晰明了故具备较强透明度便于理解背后原理机制运作情况;后者则由于其黑箱特性使得即便可以获得优异成果却难以确切知晓具体原因所在从而影响到了部分实际应用场合下的采纳率提升速度. ```python import tensorflow as tf from sklearn.svm import SVC # Example of a simple SVM model (Machine Learning) svm_model = SVC(kernel='linear') X, y = [[0, 0], [1, 1]], [0, 1] svm_model.fit(X, y) # Example of a basic Neural Network using TensorFlow/Keras (Deep Learning) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(8, activation='relu', input_shape=(2,)), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit([[0, 0], [1, 1]], [0, 1], epochs=50, verbose=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值