大语言模型技术专栏(六):大语言模型三大架构解密——从Transformer到GPT/BERT/T5的进化之路

概要

在之前的文章中,我们聊过Transformer的核心机制。但你是否好奇,为什么同样是基于Transformer,有的模型(如GPT)擅长写小说,有的(如BERT)擅长文本分析,而T5却能做翻译?今天我们就来揭开这个谜底——大语言模型的三大经典架构,用最通俗的比喻+动图演示+代码实战,带你彻底搞懂它们的区别与设计哲学!

一、Transformer:所有架构的「母体」

1.1 Transformer的核心设计

Transformer就像一台精密的信息加工流水线,由两个核心车间组成:

Encoder(编码器):阅读理解专家,负责提取文本特征

Decoder(解码器):故事创作大师,负责生成新内容

1.2 架构演化逻辑

科学家们根据任务需求,对这两个车间进行组合,演化出三大架构:

Encoder-only:只保留编码器(如BERT)

Decoder-only:只保留解码器(如GPT)

Encoder-Decoder:双车间协同(如T5)

二、Encoder-only架构:文本理解之王

2.1 设计理念

目标:深度理解文本含义

结构特点:仅使用Encoder堆叠

采用双向注意力(能看到上下文全貌)

2.2 典型代表

BERT:自然语言处理领域的里程碑

RoBERTa:BERT的优化升级版

2.3 预训练方式

掩码语言模型(MLM):随机遮盖部分词,让模型预测

输入:"今天[MASK]气真好"
目标:预测被遮盖的词"天"

2.4 应用场景

文本分类(如情感分析)

实体识别(如提取人名、地名)

三、Decoder-only架构:文本生成霸主

3.1 设计理念

目标:流畅生成文本

结构特点:仅使用Decoder堆叠

采用单向注意力(只能看到左侧内容)

3.2 典型代表

GPT系列(GPT-3、ChatGPT)

LLaMA:Meta开源的轻量级模型

3.3 预训练方式

自回归语言模型:逐词预测下一个词

输入:"人工智能的未"
输出:迭代生成"来""是""..."(类似手机输入法联想)

3.4 应用场景

故事创作

代码生成

四、Encoder-Decoder架构:多面手专家

4.1 设计理念
目标:处理输入到输出的映射关系

结构特点:

Encoder负责理解输入

Decoder负责生成输出

通过交叉注意力连接

4.2 典型代表
T5(Text-to-Text Transfer Transformer)

BART:擅长文本重构任务

4.3 预训练方式
文本到文本转换:统一所有任务为输入输出格式

输入:"翻译:Hello world → 法语"
输出:"Bonjour le monde"

4.4 应用场景

机器翻译

文本摘要

五、三大架构对比:一张表看懂区别

在这里插入图片描述

六、架构演变趋势:向更大更专发展

6.1 Decoder-only的崛起

GPT-3(1750亿参数)证明:超大规模Decoder-only模型具有强大的泛化能力

行业现象:多数百亿级大模型(如PaLM、Claude)采用Decoder-only架构

6.2 混合架构创新

FLAN-T5:在Encoder-Decoder架构上引入指令微调

UniLM:通过注意力掩码实现三种模式切换

6.3 轻量化趋势

LLaMA(70亿参数):证明小规模模型也能有优秀表现

知识蒸馏:将大模型能力迁移到小模型

七、代码实战:用Hugging Face调用三大架构

7.1 Encoder-only示例(BERT)

from transformers import BertModel, BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
inputs = tokenizer("Hello world!", return_tensors="pt")
outputs = model(**inputs)  # 获取文本向量表示

7.2 Decoder-only示例(GPT-2)

from transformers import GPT2LMHeadModel, GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
inputs = tokenizer("The future of AI", return_tensors="pt")
outputs = model.generate(**inputs)  # 生成文本

7.3 Encoder-Decoder示例(T5)

from transformers import T5ForConditionalGeneration, T5Tokenizer

tokenizer = T5Tokenizer.from_pretrained('t5-small')
model = T5ForConditionalGeneration.from_pretrained('t5-small')
inputs = tokenizer("translate English to French: Hello world", return_tensors="pt")
outputs = model.generate(**inputs)  # 输出翻译结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值