吃火锅 入职后导师

这篇博客探讨了在导师邀请下吃火锅的情景,面对m个菜品和固定的手速n,如何制定策略以吃到最多的可口菜品。问题转化为在有限时间内优化取菜顺序,以最大化享受新鲜菜品的数量。输入包括菜品数量和手速,以及每个菜品的下锅和煮熟时间。通过算法分析,寻求最优解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

入职后导师会请你一起吃火锅,有m个菜品,你的手速是n(即吃完一道菜,要经过时间n才能再去夹菜)。任一菜品下锅后,都需要经过对应时间才能熟,过时就不可口了。怎样可以吃到最多的可口的菜。

输入:
第1行:菜品数量m,手速n
第2-m行:每行两个数字,第一个数字代表下某菜的时间,第二个数字代表该菜下锅后到煮好需要的时间。
输出:
最多可以吃多少道菜

public class Main {
   
   
    public static void main(String[] args)
关于华为OD导师一起吃火锅的问题,以下是详细的解答和相关信息整合: --- 为了最大化享受火锅体验,需要解决如何选择食材以及何时食用以确保每种食材都达到最佳口感。以下是一些关键点及解决方案: 1. **理解题目背景** 华为OD机试题中的“导师吃火锅”是一个算法设计问题。核心在于模拟火锅场景下的食材烹饪过程。不同食材有不同的煮熟时间需求,在特定时间内合理安排取食顺序可以保证吃到最多数量的完美状态的食物。 2. **输输出分析** 输通常包括两部分内容:一是各种菜品及其对应的最短成熟时间和最长适宜食用时间段;二是具体的时间轴上哪些时刻你可以尝试从锅里夹出食物来品尝。而输出则应给出能够成功享用到的理想菜肴数目或者具体的菜单列表。 3. **解法思路概述** - 利用数据结构存储信息,例如数组或链表记录每道菜的基本属性。 - 对于每一个给定的操作时间节点,检查此时是否有任何一道处于理想可被消费阶段内的菜品存在。 - 如果发现符合条件的对象,则标记该对象已被消耗掉,并增加计数器值表示又多享用了新的一份佳肴。 4. **代码实现样例 (Python)** ```python def max_dishes(cooking_times, query_times): result = [] for t in query_times: count = 0 for start, end in cooking_times: if start <= t <= end: count += 1 result.append(count) return result # 示例测试 cooking_times = [(1, 5), (2, 6), (3, 7)] # 菜品的可用区间 query_times = [1, 2, 3] # 查询的具体时间点 print(max_dishes(cooking_times, query_times)) # 输出结果[1, 2, 3] ``` 5. **优化建议** 当面对大规模的数据集时,简单的双重循环可能效率低下。可以通过排序加二分查找等高级技术手段进一步提升程序运行速度与资源利用率表现。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Brown_ bear

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值