
▶ 智能算法
文章平均质量分 74
遗传算法,粒子群算法,蚁群算法等实现路径规划,TSP
cuntou0906
凌晨三点的麓山南路!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
PSO(粒子群)求解TSP(旅行商问题)
PSO(粒子群)求解TSP(旅行商问题) PSO求解TSP代码可以参考之前的博客PSO求解TSP。但是有时候可能会加一些限制,例如某个城市需要先被访问。这里以城市8要第一个访问,起始只需要每次昨晚位置更新后,将城市8更换至第一个访问城市即可。修改 只需修改初始化和每次更新位置的函数,initpos.m 和 updatepos.m 文件。function [ pos ] = initpos( pasize,padim )%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%原创 2021-06-15 16:50:23 · 2739 阅读 · 0 评论 -
质量挖掘算法
质量挖掘算法 对于N个用户和M个产品,每一名用户都有选择性去给每一个产品进行评分, 定义第 l 个产品的 quality 为qlq_lql:ql=∑i=1Nfixil∑i=1Nfiq_l = \frac{\sum_{i=1}^Nf_ix_{il}}{\sum_{i=1}^Nf_i}ql=∑i=1Nfi∑i=1Nfixil 定义第 i 个用户的 reputation 为fif_ifi :fi=1Vif_i = \frac{1}{V_i}fi=Vi1Vi=1M∑l=1M(xil原创 2021-01-28 16:29:40 · 286 阅读 · 0 评论 -
蚁群算法(ACO)求解TSP问题
TSP1.1 问题描述 给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起 始城市的最短回路。这里给定 10 个城市和两两之间的距离。如图 2.1 所示。1.2 蚁群算法求解1.2.1 求解思路1.2.2 流程图1.3 实验结果1.3.1 基本蚁群算法1.3.2 最大最小蚁群算法1.4 结果讨论 从实验结果可以看出,蚁群算法搜寻最优路径的结果较为稳定,但是这与 m, NC,Q,a,b,p 的参数都有很大的关系。在基本蚁群算法中,从图 2.4原创 2021-01-21 11:52:40 · 1696 阅读 · 1 评论 -
粒子群算法(PSO)求解TSP问题
TSP1.1问题描述 给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起 始城市的最短回路。这里给定 10 个城市和两两之间的距离。如图 2.1 所示。1.2 粒子群算法求解1.2.1 求解思路 粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。 在 TSP 问题中,我们将每一条访问城市的顺序编码为一个个体,每个种群有 n 个个体,即有 n 种访问顺序,同时,每个个体又有 9原创 2021-01-21 11:44:29 · 14459 阅读 · 1 评论 -
遗传算法(GA)求解TSP问题
TSP1.1问题描述 给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起 始城市的最短回路。这里给定 10 个城市和两两之间的距离。如图 2.1 所示。1.2 遗传算法求解1.2.1 求解思路 遗传算法是通过将优化函数的可能解表示成一个个体,每个个体用一定编码 方式形成基因,借助遗传算子,选择、交叉、变异操作,对种群进行演化,选择 出更适应环境的种群。 在 TSP 问题中,我们将每一条访问城市的顺序编码为一个个体,每个种群有 n 个个体,即有 n 种访问顺序,原创 2021-01-21 11:35:11 · 5774 阅读 · 3 评论 -
粒子群算法(PSO)求解路径规划
粒子群算法求解路径规划路径规划问题描述 给定环境信息,如果该环境内有障碍物,寻求起始点到目标点的最短路径, 并且路径不能与障碍物相交,如图 1.1.1 所示。1.2 粒子群算法求解1.2.1 求解思路 粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。 在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,即有 n 条路径,同时,每个粒子又有 m 个染色体,即中间过渡点的原创 2021-01-21 11:15:41 · 26728 阅读 · 23 评论 -
蚁群算法(ACO)求解路径规划
蚁群算法求解路径规划路径规划问题描述 给定环境信息,如果该环境内有障碍物,寻求起始点到目标点的最短路径, 并且路径不能与障碍物相交,如图 1.1.1 所示。1.2 蚁群算法求解1.2.1 求解思路1.2.2 求解框图1.3 源码 GitHub传送门!!!...原创 2021-01-21 11:15:14 · 2735 阅读 · 3 评论 -
遗传算法(GA)求解路径规划
遗传算法求解路径规划路径规划问题描述 给定环境信息,如果该环境内有障碍物,寻求起始点到目标点的最短路径, 并且路径不能与障碍物相交,如图 1.1.1 所示。1.2 遗传算法求解1.2.1 求解思路 遗传算法是通过将优化函数的可能解表示成一个个体,每个个体用一定编码 方式形成基因,借助遗传算子,选择、交叉、变异操作,对种群进行演化,选择 出更适应环境的种群。 在路径规划中,我们将每一条路径规划为一个个体,每个种群有 n 个个体, 即有 n 条路径,同时,每个个体又有 m 个染色体,即中原创 2021-01-21 11:12:17 · 25501 阅读 · 16 评论