霍夫找圆_autojs

本文介绍使用AutoJS实现象棋棋子位置自动识别的方法,包括屏幕截图、图像处理及霍夫圆变换等关键技术点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考牙叔autojs之识别象棋位置

const permissionsScreenshot = screenshotRequest()
    , strokeWidth = 24, textSize = 50,
    options = {
        dp: 1,               // 累加面与原始图像相比的分辨率的反比参数,dp=2时累计面分辨率是元素图像的一半,宽高都缩减为原来的一半,dp=1时,两者相同。默认为1。
        minDst: 80,         // 两个圆心之间的最小距离。默认为图片高度的八分之一。
        param1: 100,       // Canny边缘检测的高阈值,低阈值被自动置为高阈值的一半。默认为100,范围为0-255。
        param2: 45,       // 累加平面对是否是圆的判定阈值,默认为100。
        minRadius: 180,   // 圆半径最小值,默认为0。
        maxRadius: 100, // 圆半径最大值,0为不限制最大值,默认为0。
    }

if (!requestScreenCapture()) {
    toast("请求截图失败");
    exit();
} else {
    permissionsScreenshot && permissionsScreenshot.interrupt()
    sleep(2000)
    screen = captureScreen();
    toastLog("截图成功")
    霍夫找圆(screen);
}
// ==================自定义函数===================================
function 霍夫找圆(screen) {
    // 对图像进行中值滤波,返回处理后的图像。
    let medianBlurImg = images.medianBlur(screen, 3)
    let grayscaleImg = images.grayscale(medianBlurImg);
    medianBlurImg.recycle();
    let findBalls = images.findCircles(grayscaleImg, options);
    grayscaleImg.recycle();
    let haveBalls = findBalls && findBalls.length > 0;
    if (haveBalls) {
        toastLog("有圆" + findBalls.length + "个");
        start(findBalls)
    } else {
        toastLog("无圆结束");
    }
}
function start(dataList) {
    window = floaty.rawWindow(
        <frame id="action" w="{{device.width}}" h="{{device.height}}">
            <canvas id="canvas" layout_weight="1" />
        </frame>
    );
    window.canvas.on("draw", (canvas) => {
        let circlePaint = new Paint();
        circlePaint.setStrokeWidth(strokeWidth);
        circlePaint.setColor(colors.parseColor("#FF0000"));
        circlePaint.setStyle(Paint.Style.STROKE); //空心矩形框

        let textPaint = new Paint();
        textPaint.setTextAlign(Paint.Align.CENTER);
        textPaint.setTextSize(textSize);
        textPaint.setStyle(Paint.Style.FILL);
        textPaint.setColor(colors.parseColor("#f000ff"));
        var len = dataList.length;
        for (var i = 0; i < len; i++) {
            let data = dataList[i];
            canvas.drawCircle(data.x, data.y, data.radius + 5, circlePaint);
            canvas.drawText(i + "", data.x, data.y, textPaint);
        }
    });
    setTimeout(() => { window.close() }, 8000);
}


/* 截图权限 */
function screenshotRequest() {
    console.log("开启截图权限")
    return threads.start(function () {
        while (true)
            if (text("立即开始").exists()) {
                sleep(500)
                Bounds(text("立即开始").findOne())
            } else if (text("允许").exists()) {
                sleep(500)
                Bounds(text("允许").findOne())
            }
    })
}

/**
 * 点击
 * @param {控件} obj
 */
function Bounds(obj) {
    try {
        obs = obj.bounds();
        click((Math.abs(obs.left) + Math.abs(obs.right)) / 2, (Math.abs(obs.top) + Math.abs(obs.bottom)) / 2);
    } catch (e) {
        Bounds(obj);
    }
}


import cv2 as cv import numpy as np def hough_circle(image): #因为霍夫检测对噪声很明显,所以需要先滤波一下。 dst =cv.pyrMeanShiftFiltering(image,10,100) cimage=cv.cvtColor(dst,cv.COLOR_BGR2GRAY) circles = cv.HoughCircles(cimage,cv.HOUGH_GRADIENT,1,40,param1=40,param2=29,minRadius=30,maxRadius=0) #把circles包含的心和半径的值变为整数 circles = np.uint16(np.around(circles)) for i in circles[0]: cv.circle(image,(i[0],i[1]),i[2],(0,255,0),3) cv.imshow("circle",image) src = cv.imread("E:/opencv/picture/coins.jpg") cv.imshow("inital_window",src) hough_circle(src) cv.waitKey(0) cv.destroyAllWindows() 霍夫变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的上的一点, 跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位。 在笛卡尔坐标系中的方程为: 其中(a,b)是心,r是半径,也可以表述为: 即 在笛卡尔的xy坐标系中经过某一点的所有映射到abr坐标系中就是一条三维的曲线: 经过xy坐标系中所有的非零像素点的所有就构成了abr坐标系中很多条三维的曲线。 在xy坐标系中同一个上的所有点的方程是一样的,它们映射到abr坐标系中的是同一个点,所以在abr坐标系中该点就应该有的总像素N0个曲线相交。 通过判断abr中每一点的相交(累积)数量,大于一定阈值的点就认为是。 以上是标准霍夫变换实现算法。 问题是它的累加到一个三维的空间,意味着比霍夫线变换需要更多的计算消耗。 Opencv霍夫变换对标准霍夫变换做了运算上的优化。 它采用的是“霍夫梯度法”。它的检测思路是去遍历累加所有非零点对应的心,对心进行考量。 如何定位心呢?心一定是在上的每个点的模向量上,即在垂直于该点并且经过该点的切线的垂直线上,这些上的模向量的交点就是心。 霍夫梯度法就是要去查这些心,根据该“心”上模向量相交数量的多少,根据阈值进行最终的判断。 bilibili: 注意: 1.OpenCV的霍夫变换函数原型为:HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles image参数表示8位单通道灰度输入图像矩阵。 method参数表示检测方法,目前唯一实现的方法是HOUGH_GRADIENT。 dp参数表示累加器与原始图像相比的分辨率的反比参数。例如,如果dp = 1,则累加器具有与输入图像相同的分辨率。如果dp=2,累加器分辨率是元素图像的一半,宽度和高度也缩减为原来的一半。 minDist参数表示检测到的两个心之间的最小距离。如果参数太小,除了真实的一个圈之外,可能错误地检测到多个相邻的圈。如果太大,可能会遗漏一些圈。 circles参数表示检测到的的输出向量,向量内第一个元素是的横坐标,第二个是纵坐标,第三个是半径大小。 param1参数表示Canny边缘检测的高阈值,低阈值会被自动置为高阈值的一半。 param2参数表示心检测的累加阈值,参数值越小,可以检测越多的假圈,但返回的是与较大累加器值对应的圈。 minRadius参数表示检测到的的最小半径。 maxRadius参数表示检测到的的最大半径。 2.OpenCV画的circle函数原型:circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img img参数表示源图像。 center参数表示心坐标。 radius参数表示的半径。 color参数表示设定的颜色。 thickness参数:如果是正数,表示轮廓的粗细程度。如果是负数,表示要绘制实心。 lineType参数表示线条的类型。 shift参数表示心坐标和半径值中的小数位数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值