Prometheus01-Prometheus的所有指标参数及其解释

这篇文章详细解释了Prometheus中关于HTTP处理的指标,如请求总数、并发请求数以及处理时间。同时,它涵盖了Go运行时的内存使用情况,包括分配的内存、堆使用、垃圾回收等信息。此外,还讨论了系统资源的使用,如CPU时间、内存和文件描述符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

指标参数解释
promhttp_metric_handler_requests_total处理HTTP请求的总数
promhttp_metric_handler_requests_in_flight当前正在处理的HTTP请求的数量
promhttp_metric_handler_request_duration_seconds处理HTTP请求的持续时间,以秒为单位
promhttp_metric_handler_response_size_bytesHTTP响应的大小,以字节为单位
go_threads当前正在运行的Go线程数
go_goroutines当前正在运行的Go协程数
go_memstats_alloc_bytes已分配的内存总数,以字节为单位
go_memstats_alloc_bytes_total分配的总内存数,以字节为单位
go_memstats_sys_bytes系统占用的内存总数,以字节为单位
go_memstats_heap_alloc_bytes堆分配的总数,以字节为单位
go_memstats_heap_sys_bytes堆使用的总数,以字节为单位
go_memstats_mallocs_total分配的总数量
go_memstats_frees_total释放的总数量
go_gc_duration_seconds垃圾回收的持续时间,以秒为单位
go_gc_cpu_fractionCPU用于垃圾回收的分数
go_gc_sys_bytes从OS获取的内存数,用于垃圾回收
go_gc_next_gc_bytes在下次垃圾回收之前需要分配的内存数
go_gc_last_gc_time_seconds上次垃圾回收的时间戳
process_cpu_seconds_total进程使用的CPU时间,以秒为单位
process_max_fds进程打开的最大文件描述符数
process_open_fds进程打开的文件描述符数
process_resident_memory_bytes进程使用的物理内存数,以字节为单位
process_start_time_seconds进程启动的时间戳
process_virtual_memory_bytes进程使用的虚拟内存数,以字节为单位
process_heap_bytes进程堆使用的内存数,以字节为单位
process_heap_objects进程堆中对象的数量
node_cpu_seconds_total每个CPU核心的CPU时间
node_cpu_seconds_total{mode="idle"}空闲的CPU时间
node_cpu_seconds_total{mode="iowait"}等待I/O的CPU时间
node_cpu_seconds_total{mode="system"}内核模式下使用的CPU时间
node_cpu_seconds_total{mode="user"}用户模式下使用的CPU时间
node_cpu_seconds_total{mode="nice"}nice优先级下使用的CPU时间
node_load1最近1分钟的平均系统
<think>好的,我现在需要帮用户解决如何通过Prometheus监控kube-ovn的关键指标以及设置告警规则的问题。首先,我得回忆一下kube-ovn的基本架构和它暴露的指标类型。kube-ovn是一个基于OVS的Kubernetes网络插件,可能涉及子网、端口、流量等方面的指标。 用户提到了Prometheus,所以需要确认kube-ovn是否已经集成了Prometheus的exporter。一般来说,像这样的云原生项目应该会提供/metrics端点。接下来,我需要检查kube-ovn的文档,确认如何启用指标暴露。可能需要修改部署的配置,比如在DaemonSet或Deployment中添加相关的参数,确保各个组件(如kube-ovn-controller、kube-ovn-cni)的metrics端口被正确暴露。 然后,关于Prometheus的配置,用户需要添加ServiceMonitor或者PodMonitor来自动发现这些指标。这涉及到Prometheus Operator的使用,如果用户已经在使用它的话。如果没有,可能需要手动配置scrape_configs来抓取目标。需要确保Prometheus能够访问到kube-ovn的Pod IP和端口,可能需要检查服务账户、RBAC权限以及网络策略是否允许。 接下来是关键指标的梳理。kube-ovn可能提供的指标包括网络接口的状态(如up/down)、流量统计(字节数、包数)、错误计数、子网IP使用情况等。比如,ovn_iface_rx_bytes和ovn_iface_tx_bytes可以用来监控网络流量,ovn_subnet_available_ips可以跟踪子网的IP地址使用情况。这些指标对于监控网络健康和容量规划都很重要。 然后是告警规则的设置。用户需要根据这些指标定义有意义的告警。例如,当某个网络接口的流量超过阈值时触发告警,或者子网IP使用率超过80%时发出预警。需要参考Prometheus的Alertmanager配置,确保告警能够路由到正确的接收渠道,比如邮件、Slack或PagerDuty。 另外,可能需要集成Grafana来可视化这些指标,利用现有的仪表盘模板或自定义面板。用户提到的kube-state-metrics可能不直接相关,但如果有其他Kubernetes资源需要监控,可以结合使用。需要确保Grafana的数据源正确指向Prometheus实例,并且仪表盘配置正确。 最后,验证整个流程是否正常工作。部署配置后,检查Prometheus的Targets页面,确认kube-ovn的指标被成功抓取。然后,在Prometheus的Graph界面查询相关指标,确认数据存在。创建测试告警规则,触发条件看是否能正确通知。同时,检查Grafana面板是否正常显示数据。 可能遇到的问题包括指标未暴露、网络策略阻止访问、RBAC权限不足、Prometheus配置错误等。需要逐步排查,确保每一步都正确配置。另外,用户可能还关心如何优化指标抓取频率,如何长期存储数据,或者如何扩展监控到其他组件,这些可以作为后续的优化点或相关问题的建议。</think>### 通过 Prometheus 监控 kube-ovn 关键指标及告警规则最佳实践 #### 1. **暴露 kube-ovn 指标** kube-ovn 默认通过 HTTP 端口提供 Prometheus 格式的指标,需确保以下组件启用指标暴露: - **kube-ovn-controller**:默认端口 `10660/metrics` - **kube-ovn-cni**:默认端口 `10665/metrics` - **kube-ovn-pinger**:默认端口 `8080/metrics`(网络延迟检测) **配置示例**(通过修改 Deployment/DaemonSet): ```yaml containers: - name: kube-ovn-controller args: - --metrics-bind-address=0.0.0.0:10660 ``` #### 2. **Prometheus 抓取配置** 使用 ServiceMonitor(需安装 Prometheus Operator)或手动配置 `scrape_configs`: ```yaml - job_name: 'kube-ovn' kubernetes_sd_configs: - role: pod namespaces: names: [kube-system] relabel_configs: - source_labels: [__meta_kubernetes_pod_label_app] regex: kube-ovn-(controller|cni|pinger) action: keep - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port] regex: (.+):(?:\d+);(\d+) replacement: ${1}:${2} target_label: __address__ ``` #### 3. **关键监控指标** | 指标名称 | 类型 | 说明 | |-----------------------------------|-----------|----------------------------------------------------------------------| | `ovn_iface_rx_bytes` | Gauge | 网络接口接收字节数,用于流量监控 | | `ovn_iface_tx_bytes` | Gauge | 网络接口发送字节数 | | `ovn_subnet_available_ips` | Gauge | 子网可用 IP 数量,预警 IP 耗尽风险[^2] | | `ovn_logical_flow_count` | Gauge | OVN 逻辑流表数量,异常增长可能预示配置问题 | | `kube_ovn_pinger_loss_count` | Counter | 网络丢包次数,检测节点间连通性 | #### 4. **告警规则配置(示例)** 在 Prometheus 的 `alert.rules.yml` 中添加: ```yaml groups: - name: kube-ovn-alerts rules: - alert: KubeOVNSubnetIPExhaustion expr: ovn_subnet_available_ips / ovn_subnet_capacity_ips < 0.2 for: 10m annotations: summary: "子网 {{ $labels.subnet }} IP 使用率超过 80%" description: "当前可用 IP 仅剩 {{ $value }}%" - alert: KubeOVNInterfaceDown expr: ovn_iface_status == 0 for: 2m annotations: summary: "OVN 接口 {{ $labels.interface }} 异常断开" - alert: KubeOVNHighPacketLoss expr: increase(kube_ovn_pinger_loss_count[5m]) > 100 annotations: summary: "节点间 5 分钟内丢包次数超过 100 次" ``` #### 5. **集成 Grafana 可视化** 使用预置仪表盘或自定义面板,重点监控: - **网络流量拓扑**:展示 Pod/Node 的实时流量 - **子网 IP 分配趋势**:结合 `ovn_subnet_*` 指标 - **跨节点延迟分布**:基于 `kube_ovn_pinger` 的 RTT 数据 #### 6. **验证与调试** - 访问 `http://<kube-ovn-pod-ip>:<metrics-port>/metrics` 验证指标暴露 -Prometheus Web 界面查询 `ovn_` 开头的指标 - 使用 `kubectl port-forward` 本地调试 Grafana
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值