生成Yolox检测负样本-对应空文件夹txt、批量文件重命名、批量转化三通道去除小图

该博客介绍了如何生成Yolox检测所需的负样本txt文件,以及进行批量文件重命名和批量转化图像为三通道并去除小图的操作,旨在提升目标检测效率和质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.生成Yolox检测负样本-对应空文件夹txt

import os.path
import cv2
from tqdm import tqdm

path = r"G:\pachong\fuyangben_img"  #负样本图片文件夹
save_path=r"G:\pachong\fuyangben_txt" #生成空的txt文件夹
files = os.listdir(path)
print(files)
for pic in tqdm(files):
    # # basename = os.path.basename(image_name)
    before_name = os.path.splitext(pic)[0]
    txt_name = os.path.splitext(before_nam
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值