入门推荐系统,这25篇综述文章足够了

本文提供了一份推荐系统的入门指南,汇总了25篇综述文章,涵盖协同过滤、混合推荐、标签推荐等多个领域。推荐系统通过用户行为、画像和物品属性构建模型,用于预测用户行为。文章按照推荐的类型进行分类,帮助读者建立全面的认识,并提供了进一步阅读资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


推荐系统,对于我们来说并不陌生,可以说无处不在。抖音的视频推荐让我们欲罢不能,淘宝的猜你喜欢令大家流连忘返,网易云的每日歌单使我们沉浸其中。可见,推荐技术已经成为了业界的流量担当、变现神器,也成为了我们的生活小助手,渗透到生活的各个方面。

推荐系统的核心是推荐算法,其通过利用用户对项目的行为数据、用户画像以及物品属性来构建推荐模型,进而对用户的未来行为进行预测。

推荐系统根据不同的分类维度可进行多种分类,以下进行举例介绍。

  • 根据产品的存在形式可以分为:首页推荐热门推荐相关推荐等。

  • 根据推荐技术的不同分为:基于内容的推荐基于协同过滤的推荐基于混合的推荐

  • 根据利用的信息不同可分为:协同过滤推荐社会化推荐兴趣点推荐知识图推荐以及标签推荐等。

  • 根据推荐任务不同可分为:评分预测项目排序

  • 根据模型所利用假设不同分为:以KNN为代表的非训练的方法以MF为代表的传统机器学习方法,以及以Wide&Deep模型为代表的深度学习推荐等。

可见推荐的形式以及种类繁多,对于刚入门的同学来说有点头疼。那么如何才能入门呢,相信最好的办法是阅读相关的综述文章(当然最好是有一定的数学基础以及背景知识)。因此本文的作用起到综述索引的效果,我也把她叫做推荐系统综述的综述(Surveys on Survey on Recommendation),将对25篇推荐系统综述归类为15种类别,希望能够对大家有一个整体的概念。然后便是选择其中一个具体细分领域进行深挖,成为该领域的佼佼者。

推荐系统综述

  • Adomavicius et al. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE, 2005.

  • Zhu et al. Research Commentary on Recommendations wi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值