嘿,记得给“机器学习与推荐算法”添加星标
推荐系统中大多方法仅基于单类行为数据建模,而忽略了真实应用场景中的复杂交互关系。本文提出对用户多行为交互关系,以及基于知识信息的商品间复杂关联关系进行结合,使用异构多重图神经网络架构模型对其进行深入的关系学习。
作者 | 夏良浩, 黄超
单位 | 香港大学
研究方向 | 推荐系统
本文分享一篇AAAI2021的基于知识增强的层次化图Transformer网络的多行为推荐算法的文章。
论文链接:https://arxiv.org/abs/2110.04000
代码链接:https://github.com/akaxlh/KHGT
1
背景介绍
个性化推荐系统对用户、商品特征进行学习,从而对用户偏好进行准确预测,能够帮助用户更方便地获取需要的商品和服务,从而减轻信息过载,推荐系统因此在线上购物、社交平台、流媒体等众多互联网应用中起到了巨大的作用,变得必不可少。在各类推荐系统中,对用户-商品历史交互数据进行挖掘的协同过滤方法一直以来吸引了巨大的关注。协同过滤模型将用户与商品映射到高维潜在语义空间,采用传统或基于深度网络的模型对用户交互数据进行建模。训练过程对观测数据进行拟合,从而使模型可以获得经过较好的用户、商品表征,对用户的交互特征进行描绘,并以此对未观测的用户偏好进行预测。
尽管协同推荐方法已经取得了很大的进展,但现有工作大多基于单类用户-商品行为数据,例如购买或点击,而忽略了真实应用情景中的复杂的交互关系类型。例如在电商场景中,用户可以通过浏览详情页、收藏商品、将商品加入购物车等方法与商品进行交互。同时,商品间也可以通过属于同一品牌、归于同一类别、被同一个用户交互过等方式产生具备不同语义的关联关系。这些复杂的用户-商品关系及商品间关系,以复杂的关联关系蕴藏着用户和商品的丰富交互特征,对其进行充分挖掘可以极大地促进协同推荐模型的效果提升。因此,本文提出对用户多行为交互关系,以及基于知识信息的商品间复杂关联关系进行结合,使用异构多重图神经网络架构模型对其进行深入的关系学习。
尽管目前已经有一些着手处理多行为交互数据的工作,然而这些方法仍然忽略了多行为交互数据的动态性和复杂性。例如现有方法对不同行为类别进行层级式的语义预定义(对用户偏好来说,浏览<加购物车<购买)。这种相对静态的多重关系学习方法对预定义关系的好坏具有极高的要求,难以处理收藏行为、加购物车行为等关系较为模糊的情况。部分现有方法采用了自注意力机制等方法对行为类别间关联进行自适应学习,但该类方法大多仍停留在较粗的关系粒度,仅对行为类别整体进行关联学习,而忽略了单个交互记录的权重影响差别。另外,现有工作较少将行为发生时间与行为多重异构性进行综合考虑的,从而不能捕捉多行为数据中的动态关系。为了更好地处理多行为推荐数据,本章关注以下三个挑战:
a. 商品多重关系学习。现有的多行为推荐方法仅将关注点放在用户-商品间关联,而忽略了商品在生产、流通、销售环节所产生的丰富知识数据。这些商品间多重关系与用户多行为交互数据具有相似的形式和作用,却往往被现有的多行为推荐方法忽略。
b. 个性化异构信息传播。现有的多行为推荐模型虽然关注了不同行为类型之间的关联关系,但其将行为类别下所有交互数据视为整体的做法,不能精确捕捉多行为交互场景中单个交互关系的独特性。我们认为,在对用户-商品及商品-商品多重异构关系进行学习时,需要考虑单个异构关系进行图信息传播,从而更好地捕捉多行为和商品间多类别关系。