基于多目标优化的推荐系统综述

本文深入探讨了多目标推荐系统,总结了它们在准确性、新颖性和多样性等方面的优化,概述了多目标优化技术在推荐系统中的应用,指出了现有挑战,并为未来研究提供了指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嘿,记得给“机器学习与推荐算法”添加星标


推荐系统已经广泛应用于多个领域,其通过根据用户偏好推荐可能感兴趣的物品来进行辅助决策。其中比较流行的推荐算法是基于模型的方法,它对特定的目标进行优化以提高推荐性能。然而,这些传统的推荐模型通常只处理单一的目标,例如最小化预测误差或最大化推荐的排名质量。

近年来,考虑多目标推荐系统的需求日益增多。例如,可以通过优化推荐的准确性、新颖性和多样性等多个指标来构建完善的推荐模型。多目标优化方法已取得了很好的发展,并应用于推荐系统领域。在本篇文章中,该文提供了一个多目标推荐系统的全面文献综述 (Multi-objective Recommender Systems, MORS)。特别是,确定了多目标推荐系统在哪些情况下可以发挥作用,并总结了推荐系统的方法和评估方式,指出了现有的挑战或不足,最后为多目标推荐系统的发展提供了指导方针和建议。

https://www.sciencedirect.com/science/article/pii/S0925231221017185

这篇论文的主要贡献如下:

  • 本文首次对多目标推荐系统进行了全面综述。

  • 本文总结了多目标推荐方法发挥作用的情况,为推荐系统和该领域的研究人员提供了关于多目标优化的指导。

  • 本文介绍并讨论了多目标优化技术及其在推荐系统中的应用。此外,还指出了当前发展中多目标推荐的弱点和挑战。

  • 最后,本文为研究人员在模型开发和实验设计中选择合适的多目标优化方法提供了一个工作框架。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值