利用蒙特卡洛树搜索自我精炼算法提升大模型的数学解题能力

人工智能咨询培训老师叶梓 转载标明出处

尽管LLMs在处理语言相关任务时表现出色,但在数学问题解决等需要精确推理的领域,它们的输出往往容易出错。这些错误输出虽然表面上看似合理,但实际上与事实不符,对理性过程有害。为了提高模型在这些领域的性能,来自复旦大学和上海人工智能实验室的研究团队提出了MCT Self-Refine(MCTSr)算法,该算法通过系统的探索和启发式自我精炼机制,改善了LLMs中的决策框架。

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987 

方法

Figure 1阐释了MCTSr算法的运作过程。图中的智能体通过试错学习决策和推理,类似于人类的思考方式。这个过程包括选择(Selection)、扩展(Expansion)、评估(Evaluation)和反向传播(Backpropagation)四个阶段,通过迭代优化策略来提高决策质量。MCTSr算法的主要工作流程包括以下几个阶段:

  1. 初始化(Initialization):使用一个简单的模型生成的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值