人工智能咨询培训老师叶梓 转载标明出处
大模型在处理需要从多个文档中检索和推理信息的多跳查询时,常常表现不佳,因为它们需要从多个来源检索和推理证据。图1展示了一个简单的RAG实现用于MultiHop-RAG查询。图中显示了用户查询、嵌入向量数据库、提示(Prompt)、查询上下文、错误响应的LLM、新闻文章以及从不同来源(Engadget、The Verge、BBC、CNN)的文章块。
为了解决这一问题,来自基辅-莫希拉国立大学的研究者提出了一种名为Multi-Meta-RAG的新方法,该方法通过使用数据库过滤和从LLM提取的元数据来改进检索增强生成(RAG)模型,从而更准确地选择与问题相关的文档。
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
方法
Multi-Meta-RAG 的核心在于从查询中提取元数据以构建数据库查询过滤器。这一过程通过辅助大模型完成,它通过少量示例提示(few-shot prompt)来学习如何从查询中提取文章来源和发布日期等信息。