利用数据库过滤和元数据提取提升多跳查询的RAG性能

人工智能咨询培训老师叶梓 转载标明出处

大模型在处理需要从多个文档中检索和推理信息的多跳查询时,常常表现不佳,因为它们需要从多个来源检索和推理证据。图1展示了一个简单的RAG实现用于MultiHop-RAG查询。图中显示了用户查询、嵌入向量数据库、提示(Prompt)、查询上下文、错误响应的LLM、新闻文章以及从不同来源(Engadget、The Verge、BBC、CNN)的文章块。

为了解决这一问题,来自基辅-莫希拉国立大学的研究者提出了一种名为Multi-Meta-RAG的新方法,该方法通过使用数据库过滤和从LLM提取的元数据来改进检索增强生成(RAG)模型,从而更准确地选择与问题相关的文档。

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987 

方法

Multi-Meta-RAG 的核心在于从查询中提取元数据以构建数据库查询过滤器。这一过程通过辅助大模型完成,它通过少量示例提示(few-shot prompt)来学习如何从查询中提取文章来源和发布日期等信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值