YOLOv5系列(三十七) 深度理解Binary Cross-Entropy与YOLOv5 LOSS(从二值损失基本原理到YOLOv5损失)

一,可视化理解Binary Cross-Entropy(推荐反复阅读)

介绍

如果你正在训练一个二分类器,很有可能你正在使用的损失函数是二值交叉熵/对数(binary cross-entropy / log)

你是否想过使用此损失函数到底意味着什么?问题是,鉴于如今库和框架的易用性,很容易让人忽略所使用损失函数的真正含义

动机

我一直在寻找一个可以向学生展示的以清晰简洁可视化的方式解释二值交叉熵/对数损失背后概念的博客文章。但由于我实在找不到,只好自己承担了编写的任务:-)

一个简单的分类问题

让我们从10个随机点开始:

x = [-2.2, -1.4, -0.8, 0.2, 0.4, 0.8, 1.2, 2.2, 2.9, 4.6]

这是唯一的特征:*x*

img

图0:特征

现在,让我们为点分配一些颜色红色

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值