YOLOv5系列(四十九) 解读架构

本文详细解析了YOLOv5的目标检测网络结构,包括Backbone、Neck和Head组件的变化,重点介绍了Mosaic数据增强、自适应锚框计算、自适应图片缩放以及CSP结构的应用。同时讨论了损失函数和训练策略的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接

https://docs.ultralytics.com/yolov5/tutorials/architecture_description/


一、YOLOv5 网络结构

​ Yolov5官方代码中,给出的目标检测网络中一共有4个版本,分别是Yolov5s、Yolov5m、Yolov5l、Yolov5x四个模型。如下图所示:这几个模型的结构基本是一样的,不同的是(depth_multiple)模型深度和width_multiple(模型宽度)这两个参数。YOLOv5s网络是YOLOv5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。

img

YOLOv5各版本算法性能测试图:

img

YOLOv5 网络结构主要由以下几部分组成:

  • 骨干网络(Backbone): Ne
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值