YOLOv5改进系列(五) 更换Neck之BiFPN,AFPN,BiFusion

文章目录

  • BiFPN
    • 一、BiFPN介绍
      • 1.1 简介
      • 1.2 BiFPN
        • (1)跨尺度连接
        • (2)加权特征融合
      • 1.3 EfficientDet
        • (1)模型框架
        • (2)复合缩放
    • 二、添加方式1:Add操作
        • 第①步:在common.py中添加BiFPN模块
        • 第②步:在yolo.py文件里的parse_model函数加入类名
        • 第③步:创建自定义的yaml文件
        • 第④步:验证是否加入成功
        • 第⑤步:修改train.py
    • 三、添加方式2:Concat操作
        • 第①步:在common.py中添加BiFPN模块
        • 第②步:在yolo.py文件里的parse_model函数加入类名
        • 第③步:创建自定义的yaml文件
        • 第④步:验证是否加入成功
        • 第⑤步:修改train.py
  • Neck之AFPN
    • 一、AFPN介绍
      • img1.1 简介
      • 1.2 提取多级特征
      • 1.3 渐进架构
      • 1.4 自适应空间融合
      • 1.5 实验
    • 二、更换AFPN的方法
        • 第①步:在common.py中添加AFPN模块
        • 第②步:修改yolo.py文件
        • 第③步:创建自定义的yaml文件
  • BiFusion
        • YOLOv6贡献
        • BiFusion Neck 融合的原理
        • BiFusion Neck结构图
        • 参数量与计算量
        • YOLOv5 BiFusion Neck 配置文件

BiFPN

详细解读

一、BiFPN介绍

1.1 简介

EfficientDet 是继 2019 年推出 EfficientNet 模型之后,Google 人工智能研究小组Tan Mingxing等人为进一步提高目标检测效率,以 EfficientNet 模型和双向特征加权金字塔网络 BiFPN为基础,于2020 年创新推出的新一代目标检测模型,在COCO数据集上吊打其他方法。

EfficientDet = Backbone(EfficientNet) + Neck(BiFPN) + Head(class + box)

img


1.2 BiFPN

(1)跨尺度连接
  • 移除那些只有一条输入边的节点,这是因为如果一个节点只有一条输入边而没有特征融合,那么它对以融合不同特征为目标的特征网络的贡献就比较
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值