第五十章 解读交叉熵损失函数的求导(sigmoid和softmax)

本文详细介绍了交叉熵在机器学习中的应用,特别是在神经网络分类问题中的重要性,讨论了二分类和多分类的交叉熵公式,以及与sigmoid/softmax函数的关系。它还涵盖了softmax函数、损失函数的计算和梯度推导过程,以及非负性和输出接近目标时的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

文章目录

    • 引言
    • 基本性质
    • 二分类交叉熵
    • Softmax 多分类交叉熵
    • 另一版推导(包含向量表示形式)

交叉熵,顾名思义,取的是两者交叉的熵值;而在机器学习中的所谓两者,自然是真实分布(或实际输出概率)与预测分布(或期望输出概率),通过熵值计算的方法来刻画两者距离,可以评估两个概率分布(或特征工程里的两个特征变量)的相似度。当交叉熵的值越小时,两个概率分布也就越接近,实际与期望的差距也就越小。

作为一类重要的损失函数,交叉熵较常用于分类问题,特别是神经网络的分类问题。与平方损失函数相比较,由于学习速率可以被输出误差所控制的缘故,交叉熵能在梯度下降时避免均方误差损失函数学习速率降低的问题,有着更为出色的效果。除此之外,由于交叉熵的计算涉及到各个类别的概率,所以说起交叉熵几乎与sigmoid/softmax函数形影不离,这些我们都会在下文中一一印证。

下面我们以神经网络最后一层输出为例,看一下交叉熵的具体应用场景:

(1)在神经网络的最后一层里,我们首先得到了每个类别的得分scores;

(2)这个得分经过sigmoid(或softmax)函数的变换会获得一个概率输出;

(3)将得到的概率输出与真实类别的one hot形式进行交叉熵损失函数的计算。

基本性质

当问题为二分类问题时,交叉熵的损失函数形式为:

L=−[ylog(p)+(1−y)log(1−p)]L=-[ylog(p)+(1-y)log(1-p)]L=[ylog(p)+(1y)log(1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值