YOLOv5系列(十) 本文(1万字) | 解析激活函数部分activations | 逐行代码注释解析

142 篇文章

已下架不支持订阅

本文详细解析了YOLOv5中关于激活函数的实验,包括ReLU、Leaky ReLU、PReLU、RReLU、Swish/SiLU、Mish、FReLU、AconC、meta-AconC以及DyReLU。这些函数各有优缺点,如ReLU的神经元坏死问题,Swish的平滑性,Mish的自正则化效果,FReLU的空间敏感性,AconC的理论解释,以及DyReLU的动态适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


点击进入专栏:
《人工智能专栏》 Python与Python | 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 | YOLOv8及其改进 | 关键知识点 | 各种工具教程
代码函数调用关系图(全网最详尽-重要)

因文档特殊,不能在博客正确显示,请移步以下链接!

图解YOLOv5_v7.0代码结构与调用关系(点击进入可以放大缩小等操作)

预览:
在这里插入图片描述

前言

源码:

已下架不支持订阅

### 更改 YOLOv8 的激活函数深度学习模型中,激活函数对于网络性能至关重要。为了提升YOLOv8的表现力或者适应特定应用场景的需求,可以考虑更改默认的激活函数。 #### 修改前准备 确保安装了最新版本的 Ultralytics 库以及所有依赖项。如果打算引入新的激活函数类,则可能需要额外导入相应的库或编写自定义实现[^1]。 #### 定位源码位置 通常情况下,默认使用的SiLU (Sigmoid Linear Unit)被广泛应用于现代卷积神经网络之中。要找到负责加载这些层的地方,在`ultralytics/yolo/layers.py`文件里搜索包含`nn.SiLU()`的部分即可定位到具体的初始化逻辑所在之处[^2]。 #### 替换过程详解 假设想要替换成ReLU作为例子: 1. 找到并打开 `layers.py` 文件; 2. 查找所有的 SiLU 实例化语句,并将其更改为 ReLU 对应的形式;例如: ```python # 原始代码片段 self.act = nn.SiLU() # 修改后的代码片段 self.act = nn.ReLU(inplace=True) ``` 3. 如果计划使用不常见于标准 PyTorch 发行版中的特殊激活单元(比如MetaAconC),则还需要先通过如下方式完成必要的包管理操作: ```bash pip install git+https://github.com/... # 根据实际仓库地址调整命令参数 ``` 4. 接着按照上述方法编辑 Python 脚本内的相应部分,记得正确处理好命名空间冲突等问题。 5. 测试改动效果之前建议备份原始项目副本以防一出现问题能够迅速恢复原状。 6. 使用修改过的配置训练新模型时,请务必验证其收敛性和泛化能力是否有所改善。 ```python from utils.activations import MetaAconC # 导入所需激活函数 class CustomLayer(nn.Module): def __init__(self, ...): super().__init__() ... self.act = MetaAconC() # 将此行用于替代原有的激活机制 def forward(self,x): ... output = self.act(x) # 在forward pass期间调用它 return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值