
手写AI
文章平均质量分 92
记录车道线感知的学习过程,分享有关知识,感谢交流学习
小酒馆燃着灯
我有一只快乐的小狗
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第十七章 条件随机场
文章目录导读概念符号表IOB标记概率无向图模型MRF的因子分解团与最大团有向图模型条件随机场线性链条件随机场特征函数对数线性模型参数化形式简化形式矩阵形式概率计算导读条件随机场是给定一组输入随机变量的条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场。注意这里条件,随机场的对应。整个这一章的介绍思路,和前一章有点像,尤其是学习算法部分,和HMM比主要增加了特征函数,关于特征函数要和CH06对比着看CRF是对数线性模型概率无向图模型又称马尔可夫随机场,是可以原创 2023-11-02 14:34:39 · 533 阅读 · 0 评论 -
第十六章 隐马尔科夫模型
文章目录简介概念随机变量与随机过程马尔可夫链隐含马尔可夫模型两个基本假设三个基本问题算法观测序列生成算法概率计算算法前向概率与后向概率前向算法后向算法小结概率与期望学习问题监督学习方法Baum-Welch算法预测算法近似算法(MAP)维特比算法(Viterbi)简介动态贝叶斯网络的最简单实现隐马尔可夫模型。HMM可以看成是一种推广的混合模型。序列化建模,打破了数据独立同分布的假设。有些关系需要理清另外一个图#mermaid-svg-PpSJJ0N5INkSAd6O {f原创 2023-11-02 14:32:56 · 205 阅读 · 0 评论 -
第十五章 EM期望极大算法及其推广
文章目录导读符号说明混合模型伯努利混合模型(三硬币模型)问题描述三硬币模型的EM算法1.初值2.E步3.M步初值影响p,q 含义EM算法另外视角Q 函数BMM的EM算法目标函数LEM算法导出高斯混合模型GMM的EM算法1. 明确隐变量, 初值2. E步,确定Q函数3. M步4. 停止条件如何应用GMM在聚类中的应用KmeansK怎么定导读概率模型有时既含有观测变量,又含有隐变量或潜在变量。这句很重要,有时候我们能拿到最后的观测结果,却拿不到中间的过程记录EM算法可以用于生成模型的非监督学习,原创 2023-11-02 14:24:33 · 971 阅读 · 0 评论 -
第十四章 最大熵
一 最大熵模型二 概念逻辑斯谛回归模型和最大熵模型,既可以看作是概率模型,又可以看作是非概率模型。2.1 信息量信息量是对信息的度量, PRML中有关于信息量的讨论, 信息是概率的单调函数.h(x)=−log2p(x)h(x)=-\log_2{p(x)}h(x)=−log2p(x), 符号保证了非负性. 低概率事件对应了高的信息量. 对数底选择是任意的, 信息论里面常用2, 单位是比特.信息和概率的关系参考PRML中1.6节信息论部分的描述.如果我们知道某件事件一定会发生, 那么我原创 2023-11-02 14:04:06 · 194 阅读 · 0 评论 -
第三十章 FPN算法及其变种(车道线感知)
现有的SOTA检测器都使用了构建特征金字塔(不同尺度的特征组合),来提升对不同尺度(大小)的目标的检测鲁棒性。而FPN是其中的代表性工作本文对FPN进行了分析,找到了其中的一些设计上的缺陷针对缺陷提出了3个改进点,也正是AugFPN的3个组成部分:Consistent Supervision:用于降低不同scale之间的语义GapResidual Feature Augmentation:用于在不同尺度的特征融合(fusion, summation)中降低信息损失。原创 2023-11-10 12:14:56 · 676 阅读 · 0 评论 -
第二十九章 目标检测中的测试模型评价指标(车道线感知)
自动驾驶的一大前提是保证人的安全,故对人的检测是必须的。考虑到自动驾驶的场景需求,各类车辆、交通灯、交通标志以及其他路上高频出现的,对决策有影响的物体类别都应进行识别,例如摩托车、自行车等。在确定了数据集及检测类别后,测试指标对评估模型性能好坏有着至关重要的意义,目前已有大量相关研究。本文对在工程中选取的指标做出总结,并介绍了目前比较主流的各类评价指标。mAP: mean Average Precision, 即各类别AP的平均值AP: PR曲线下面积,后文会详细讲解。原创 2023-11-08 18:54:46 · 2080 阅读 · 2 评论 -
第二十八章 车道线检测中的论文梳理(车道线感知)
的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合。原创 2023-11-08 14:18:31 · 308 阅读 · 1 评论 -
第二十七章 解读Transformer_车道线检测中的Transformer(车道线感知)
ViT模型(特别是Large版本)在各种任务上的性能通常优于传统的ResNet模型,但计算开销也相应更高。- 模型的宽度和深度对性能有明显的影响,增加深度(如ResNet200x3)通常会提升性能,但也大幅增加计算开销。- 结合ResNet和ViT的混合模型通常能获得较好的性能-计算开销平衡,比如R50x1 + ViT-B/32在多个数据集上都展现出了竞争力强的性能,并且计算开销适中。总的来说,Vision Transformer在多个数据集上表现出色,尽管它们的计算需求较高。原创 2023-11-08 12:11:12 · 569 阅读 · 1 评论 -
第二十六章 BEV感知系列三(车道线感知)
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。BEV感知系列是对论文的翻译整理,有多处瑕疵,敬请谅解。原创 2023-11-04 14:16:18 · 572 阅读 · 0 评论 -
第二十五章 BEV感知系列二(车道线感知)
近期参与到了的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合进行系统的学习。BEV感知系列是对论文的翻译整理,有多处瑕疵,敬请谅解。原创 2023-11-04 14:15:44 · 680 阅读 · 0 评论 -
第二十四章 BEV感知系列一(车道线感知)
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。BEV感知系列是对论文的翻译整理,有多处瑕疵,敬请谅解。 自动驾驶中的感知识别任务是本质上是对物理的三维几何重建世界。随着传感器的多样性和数量变得自动驾驶的装备越来越复杂车辆(SDV),表示从不同角度的特征统一的观点至关重要。众所周知的鸟瞰图(BEV)是一种自然而直接的候选视图,可以作为统一的表示。原创 2023-11-04 14:15:08 · 937 阅读 · 0 评论 -
第二十三章 LaneAF框架结构以及接入MMDetection3D模型(车道线感知)
近期参与到了的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合进行系统的学习。原创 2023-11-02 16:05:41 · 743 阅读 · 0 评论 -
第二十二章 MMDetection3D解析系列十二_推理接口(车道线感知)
基于 MMEngine 开发时,我们通常会为具体算法定义一个配置文件,根据配置文件去构建执行器,执行训练、测试流程,并保存训练好的权重。基于训练好的模型进行推理时,通常需要执行以下步骤:基于配置文件构建模型加载模型权重搭建数据预处理流程执行模型前向推理可视化推理结果输出推理结果对于此类标准的推理流程,MMEngine 提供了统一的推理接口,并且建议用户基于这一套接口规范来开发推理代码。基于 BaseInferencer 实现自定义的推理器...原创 2023-10-23 21:12:22 · 269 阅读 · 0 评论 -
第二十一章 LaneAF框架结构以及接入MMDetection3D模型(车道线感知)
近期参与到了的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合进行系统的学习。原创 2023-10-23 20:47:30 · 189 阅读 · 0 评论 -
第二十章 MMDetection3D解析系列十一_模型精度评测(evaluation)(车道线感知)
在定义新的评测指标类时,需要继承基类BaseMetric(关于该基类的介绍,可以参考设计文档此外,评测指标类需要用注册器 METRICS 进行注册(关于注册器的说明请参考 Registry 文档)。实现 process() 方法。该方法有 2 个输入参数,分别是一个批次的测试数据样本 data_batch 和模型预测结果 data_samples。我们从中分别取出样本类别标签和分类预测结果,并存放在 self.results 中。实现 compute_metrics() 方法。原创 2023-10-17 10:30:42 · 418 阅读 · 0 评论 -
第十九章 MMDetection3D解析系列十_计算量-参数量-复杂度分析(车道线感知)
模型复杂度有 3 个指标,分别是浮点运算量(FLOPs)、激活量(Activations)以及参数量(Parameters),它们的定义如下:浮点运算量浮点运算量不是一个定义非常明确的指标,在这里参考 detectron2 的描述,将一组乘加运算定义为 1 个 flop。激活量激活量用于衡量某一层产生的特征数量。参数量模型的参数量。原创 2023-10-17 10:12:57 · 523 阅读 · 0 评论 -
第十八章 MMDetection3D解析系列九_数据变换(data transform)(车道线感知)
要实现一个新的数据变换类,需要继承 BaseTransform,并实现 transform 方法。从而,我们可以实例化一个 MyFlip 对象,并将之作为一个可调用对象,来处理我们的数据字典。又或者,在配置文件的 pipeline 中使用 MyFlip 变换......如需在配置文件中使用,需要保证 MyFlip 类所在的文件在运行时能够被导入。原创 2023-10-17 09:57:12 · 307 阅读 · 0 评论 -
第十七章 MMDetection3D解析系列八_权重初始化(车道线感知)
基于 Pytorch 构建模型时,我们通常会选择 nn.Module 作为模型的基类,搭配使用 Pytorch 的初始化模块 torch.nn.init,完成模型的初始化。MMEngine 在此基础上抽象出基础模块(BaseModule),让我们能够通过传参或配置文件来选择模型的初始化方式。假设我们定义了模型类 ToyNet,它继承自模块基类(BaseModule)。原创 2023-10-17 09:39:11 · 312 阅读 · 0 评论 -
第十六章 MMDetection3D解析系列七_优化器封装(optimwrapper)(车道线感知)
backward:传入损失,用于计算参数梯度。step:同 optimizer.step,用于更新参数。zero_grad:同 optimizer.zero_grad,用于参数的梯度。# 基于 torch.nn.utils.clip_grad_norm_ 对梯度进行裁减# 基于 torch.nn.utils.clip_grad_value_ 对梯度进行裁减add_params 被第一次调用时,params 参数为空列表(list),module 为模型(model)。封装构造器函数。原创 2023-10-16 18:18:03 · 448 阅读 · 0 评论 -
第十四章 MMDetection3D解析系列五_可视化(车道线感知)
可视化可以给深度学习的模型训练和测试过程提供直观解释。MMEngine 提供了 Visualizer 可视化器用以可视化和存储模型训练和测试过程中的状态以及中间结果,具备如下功能:支持基础绘图接口以及特征图可视化支持本地、TensorBoard 以及 WandB 等多种后端,可以将训练状态例如 loss 、lr 或者性能评估指标以及可视化的结果写入指定的单一或多个后端允许在代码库任意位置调用,对任意位置的特征、图像和状态等进行可视化和存储。原创 2023-10-15 13:46:11 · 575 阅读 · 0 评论 -
第十五章 MMDetection3D解析系列六_日志系统(车道线感知)
执行器(Runner)在运行过程中会产生很多日志,例如加载的数据集信息、模型的初始化信息、训练过程中的学习率、损失等。为了让用户能够更加自由的获取这些日志信息,MMEngine 实现了消息枢纽(MessageHub)、历史缓冲区(HistoryBuffer)、日志处理器(LogProcessor) 和 MMLogger 来支持以下功能:用户可以通过配置文件,根据个人偏好来选择日志统计方式,例如在终端输出整个训练过程中的平均损失而不是基于固定迭代次数平滑的损失。原创 2023-10-15 13:43:13 · 262 阅读 · 0 评论 -
第十三章 MMDetection3D解析系列四_钩子(hook)(车道线感知)
日志系统钩子编程是一种编程模式,是指在程序的一个或者多个位置设置位点(挂载点),**当程序运行至某个位点时,会自动调用运行时注册到位点的所有方法。**钩子编程可以提高程序的灵活性和拓展性,用户将自定义的方法注册到位点便可被调用而无需修改程序中的代码。名称用途优先级EMAHook模型参数指数滑动平均PyTorch CUDA 缓存清理同步模型的 buffer如果 MMEngine 提供的默认钩子不能满足需求,用户可以自定义钩子,只需继承钩子基类并重写相应的位点方法。原创 2023-10-13 23:47:56 · 567 阅读 · 0 评论 -
第十二章 MMDetection3D解析系列三_注册器(registry)(车道线感知)
MMEngine 实现的注册器可以看作一个映射表和模块构建方法(build function)的组合。映射表维护了一个字符串到类或者函数的映射,使得用户可以借助字符串查找到相应的类或函数,例如维护字符串 “ResNet” 到 ResNet 类或函数的映射,使得用户可以通过 “ResNet” 找到 ResNet 类;原创 2023-10-13 21:36:47 · 489 阅读 · 0 评论 -
第十三章 逻辑斯谛回归与最大熵模型
逻辑斯谛回归模型和最大熵模型,既可以看作是概率模型,又可以看作是非概率模型。原创 2023-10-13 19:01:04 · 92 阅读 · 0 评论 -
第十二章 聚类
分类是根据样本(可以融合多类特征),把样本类型归为已确定的某一类别中。机器学习中常见的分类算法有:SVM(支持向量机)、KNN(最邻近法)、Decision Tree(决策树分类法)、Naive Bayes(朴素贝叶斯分类)、Neural Networks(神经网络法)等与分类、序列标注等任务不同,聚类是在事先的情况下,通过数据之间的把样本划分为若干类别,使得同类别样本之间的相似度高,不同类别之间的样本相似度低(即。原创 2023-10-13 18:45:24 · 109 阅读 · 0 评论 -
第十一章 朴素贝叶斯
假设某人的地区完全依靠其肤色的就能确定,发型是一个对判断地区没有参考价值的特征,假设P(卷|非洲)=0, P(卷|亚洲)=0.001,当来了一个【黑,卷】人的时候,我们算出。(也就是这两个随机变量之间非条件独立),如果两个节点间以一个单箭头连接在一起,表示其中一个节点是“因”,另外一个是“果”,从而两节点之间就会产生一个。(directed acyclicgraphical model, DAG),是一种概率图模型,根据概率图的拓扑结构,考察。,可以是可观察到的变量,或隐变量,未知参数等等。原创 2023-10-13 18:01:56 · 89 阅读 · 0 评论 -
第十章 支持向量机(二)
六 非线性可分SVM6.1 引入不管是线性可分SVM还是加入惩罚系数后的软间隔线性可分SVM其实都要求数据本身是线性可分的,对于完全不可以线性可分的数据,这两种算法模型就没法解决这个问题了多项式回顾:结合多项式回归在处理非线性可分数据时候的作用,在SVM的线性不可分的数据上,如果将数据映射到高维空间中,那么数据就会变成线性可分的,从而就可以使用线性可分SVM模型或者软间隔线性可分SVM模型也就是说,对于线性不可分SVM模型来讲,重点在于低维特征数据到高维特征数据之间的映射原创 2023-10-13 17:34:08 · 183 阅读 · 0 评论 -
第九章 支持向量机(一)
文章目录一 前言二 感知机简介2.1 损失函数2.2 感知机算法的原始形式2.3 感知机算法的对偶形式2.4 关于感知机问题三 约束优化问题3.1 拉格朗日乘子法一般形式3.2 进一步拉格朗日探究四 支持向量机(Support Vector Machine)4.1 简述4.2 原理4.3 几个概念4.4 函数间隔与几何间隔4.4.1 函数间隔4.4.2 几何间隔4.5 线性可分SVM4.6 问题引入4.7 损失函数4.8 进一步优化损失函数4.9 算法流程4.10 总结五 软间隔模型5.1 简述5.2原创 2023-10-13 17:30:14 · 141 阅读 · 0 评论 -
第十一章 MMDetection3D解析系列二_Config(车道线感知)
MMEngine 实现了抽象的配置类(Config),为用户提供统一的配置访问接口。配置类能够支持不同格式的配置文件,包括 python,json,yaml,用户可以根据需求选择自己偏好的格式。配置类提供了类似字典或者 Python 对象属性的访问接口,用户可以十分自然地进行配置字段的读取和修改。为了方便算法框架管理配置文件,配置类也实现了一些特性,例如配置文件的字段继承等。虽然我们在 resnet50.py 中没有定义 optimizer 字段,但由于我们写了base。原创 2023-10-12 17:40:48 · 318 阅读 · 0 评论 -
第十章 MMDetection3D解析系列一_数据集(dataset)(车道线感知)
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。数据集与数据加载器是MMEngine中训练流程的必要组件,它们的概念来源于 PyTorch数据集,并且在含义上与 PyTorch 保持一致。原创 2023-10-12 15:15:21 · 473 阅读 · 0 评论 -
第八章 集成学习
弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(error rate < 0.5),常见的弱学习器包括决策树、朴素贝叶斯分类器、支持向量机等**预测准确率较低:**弱学习器的预测结果可能比随机猜测稍好一些,但通常不能达到高准确率**可用于组合:**虽然单个弱学习器的预测能力有限,但可以通过组合多个弱学习器来提高整体预测准确率**训练速度较快:**弱学习器通常具有较简单的结构和较少的参数,因此训练速度较快强学习器(Strong Learner)是指在机器学习中,具有。原创 2023-10-06 21:48:58 · 1147 阅读 · 1 评论 -
第七章 决策树
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。决策树分类,回归策略损失函数最小化损失函数正则化的极大似然函数决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构建决策树来进行分析的一种方式,是一种直观应用概率分析的一种图解法决策树是一种预测模型,代表的是对象属性与对象值之间的映射关系互斥并且完备。原创 2023-10-06 21:34:51 · 67 阅读 · 1 评论 -
第九章 VSCode中调试代码(车道线感知)
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。原创 2023-10-05 18:45:38 · 163 阅读 · 0 评论 -
第八章 LaneAF解读(车道线感知)
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。提出一种通过使用二元分割Mask和Per-pixel Affinity Field来进行车道线检测和实例分割的新方法,并在消融实验和主流数据集验证其有效性。使用Affinity Field聚类方法可以检测到任意宽度可变数量的车道线,无需假设固定或最大数量的车道线。原创 2023-09-29 20:22:55 · 521 阅读 · 1 评论 -
第七章 相机坐标系中的Zc值求解(车道线感知)
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。原创 2023-09-28 20:59:12 · 850 阅读 · 0 评论 -
第六章 特征工程
近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程;如何基于给定数据来发挥更大的数据价值就是特征工程要做的事情会直接影响机器学习的效果。原创 2023-09-28 13:00:54 · 158 阅读 · 0 评论 -
第六章 VSCode连接远程服务器-构建容器并连接容器(车道线感知)
近期参与到了的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合进行系统的学习。原创 2023-09-28 12:30:50 · 186 阅读 · 0 评论 -
第五章 特征转换模块的选择(车道线感知)
解析特征转换模块的选择原创 2023-09-21 15:04:46 · 216 阅读 · 0 评论 -
第四章 MMDetection3D框架(车道线感知)
解析MMDetection3D框架原创 2023-09-21 13:31:08 · 943 阅读 · 0 评论 -
第三章 OpenLane,TuSimple,CULane,CurveLanes与BDD100K数据集与标注(车道线感知)
介绍了OpenLane数据集的大致信息,紧接着介绍标注规则和标注文件,并展示标注后的图片。原创 2023-09-20 20:38:28 · 2766 阅读 · 8 评论