Pytorch torch.range()&torch.arange()

本文介绍了PyTorch中torch.range和torch.arange两个函数的使用区别。torch.range在创建一维张量时包含end值,其数据类型为float32,而torch.arange则不包含end值,返回的张量类型为int64。通过示例代码展示了两者不同的输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.range(start=1, end=6)

结果是会包含end的,创建的tensor的类型为float32。

torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

torch.arange(start=1, end=6)

结果并不包含end,创建的tensor的类型为int64。

torch.arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

代码

>>> y=torch.range(1,6)
>>> y
tensor([1., 2., 3., 4., 5., 6.])
>>> y.dtype
torch.float32

>>> z=torch.arange(1,6)
>>> z
tensor([1, 2, 3, 4, 5])
>>> z.dtype
torch.int64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值