一、RDD 算子分类:
RDD的算子主要分为两类:Transformation转换算子和Action行动算子
二、Transformation 转换算子
转换算子 | 含义 |
---|---|
map(func) | 返回一个新的 RDD,该 RDD 由每一个输入元素经过 func 函数转换后组成 |
filter(func) | 返回一个新的 RDD,该 RDD 由经过 func 函数计算后返回值为 true 的输入元素组成 |
flatMap(func) | 类似于 map,但是每一个输入元素可以被映射为 0 或多个输出元素(所以 func 应该返回一个序列,而不是单一元素) |
mapPartitions(func) | 类似于 map,但独立地在 RDD 的每一个分片上运行,因此在类型为 T 的 RDD 上运行时,func 的函数类型必须是 Iterator[T] => Iterator[U] |
mapPartitionsWithIndex(func) | 类似于 mapPartitions,但 func 带有一个整数参数表示分片的索引值,因此在类型为 T 的 RDD 上运行时,func 的函数类型必须是(Int, Interator[T]) => Iterator[U] |
sample(withReplacement, fraction, seed) | 根据 fraction 指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed 用于指定随机数生成器种子 |
union(otherDataset) | 对源 RDD 和参数 RDD 求并集后返回一个新的 RDD |
intersection(otherDataset) | 对源 RDD 和参数 RDD 求交集后返回一个新的 RDD |
distinct([numTasks])) | 对源 RDD 进行去重后返回一个新的 RDD |
groupByKey([numTasks]) | 在一个(K,V)的 RDD 上调用,返回一个(K, Iterator[V])的 RDD |
reduceByKey(func, [numTasks]) | 在一个(K,V)的 RDD 上调用,返回一个(K,V)的 RDD,使用指定的 reduce 函数,将相同 key 的值聚合到一起,与 groupByKey 类似,reduce 任务的个数可以通过第二个可选的参数来设置 |
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) | 对 PairRDD 中相同的 Key 值进行聚合操作,在聚合过程中同样使用了一个中立的初始值。和 aggregate 函数类似,aggregateByKey 返回值的类型不需要和 RDD 中 value 的类型一致 |
sortByKey([ascending], [numTasks]) | 在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口,返回一个按照 key 进行排序的(K,V)的 RDD |
sortBy(func,[ascending], [numTasks]) | 与 sortByKey 类似,但是更灵活 |
join(otherDataset, [numTasks]) | 在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素对在一起的(K,(V,W))的 RDD |
cogroup(otherDataset, [numTasks]) | 在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable,Iterable))类型的 RDD |
cartesian(otherDataset) | 笛卡尔积 |
pipe(command, [envVars]) | 对 rdd 进行管道操作 |
coalesce(numPartitions) | 减少 RDD 的分区数到指定值。在过滤大量数据之后,可以执行此操作 |
repartition(numPartitions) | 重新给 RDD 分区 |
三、Action 行作算子
行作算子 | 含义 |
---|---|
reduce(func) | 通过 func 函数聚集 RDD 中的所有元素,这个功能必须是可交换且可并联的 |
collect() | 在驱动程序中,以数组的形式返回数据集的所有元素 |
count() | 返回 RDD 的元素个数 |
first() | 返回 RDD 的第一个元素(类似于 take(1)) |
take(n) | 返回一个由数据集的前 n 个元素组成的数组 |
takeSample(withReplacement,num, [seed]) | 返回一个数组,该数组由从数据集中随机采样的 num 个元素组成,可以选择是否用随机数替换不足的部分,seed 用于指定随机数生成器种子 |
takeOrdered(n, [ordering]) | 返回自然顺序或者自定义顺序的前 n 个元素 |
saveAsTextFile(path) | 将数据集的元素以 textfile 的形式保存到 HDFS 文件系统或者其他支持的文件系统,对于每个元素,Spark 将会调用 toString 方法,将它装换为文件中的文本 |
saveAsSequenceFile(path) | 将数据集中的元素以 Hadoop sequencefile 的格式保存到指定的目录下,可以使 HDFS 或者其他 Hadoop 支持的文件系统 |
saveAsObjectFile(path) | 将数据集的元素,以 Java 序列化的方式保存到指定的目录下 |
countByKey() | 针对(K,V)类型的 RDD,返回一个(K,Int)的 map,表示每一个 key 对应的元素个数 |
foreach(func) | 针对(K,V)类型的 RDD,返回一个(K,Int)的 map,表示每一个 key 对应的元素个数 |
foreachPartition(func) | 在数据集的每一个分区上,运行函数 func |
注:所有的转换算子的返回值一定是一个RDD;所有的行动算子的返回值一定不是RDD。