自刷代码随想录Day09

文章介绍了如何使用KMP算法在字符串中找到第一个匹配项的下标,以及如何利用KMP算法的next数组判断一个字符串是否由其子串重复构成。KMP的思想在字符串匹配中起到关键作用,而滑动窗口是另一种解决问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lc28. 找出字符串中第一个匹配项的下标(中等)

给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle 不是 haystack 的一部分,则返回 -1 。
在这里插入图片描述

class Solution {
    public void getNext(int[] next, String s){
        int j = -1;
        next[0] = j;
        for (int i = 1; i < s.length(); i++){
            while(j >= 0 && s.charAt(i) != s.charAt(j+1)){
                j=next[j];
            }

            if(s.charAt(i) == s.charAt(j+1)){
                j++;
            }
            next[i] = j;
        }
    }
    public int strStr(String haystack, String needle) {
        if(needle.length()==0){
            return 0;
        }

        int[] next = new int[needle.length()];
        getNext(next, needle);
        int j = -1;
        for(int i = 0; i < haystack.length(); i++){
            while(j>=0 && haystack.charAt(i) != needle.charAt(j+1)){
                j = next[j];
            }
            if(haystack.charAt(i) == needle.charAt(j+1)){
                j++;
            }
            if(j == needle.length()-1){
                return (i-needle.length()+1);
            }
        }

        return -1;
    }
}

KMP的思想确实难,其实也就是我们做next数组那个地方有点难以理解,后面还需要多看看,再做深入分析KMP。
本题还可以使用滑动窗口来解决。


lc459. 重复的子字符串

给定一个非空的字符串 s ,检查是否可以通过由它的一个子串重复多次构成。
在这里插入图片描述
在这里插入图片描述

class Solution {
    public void getNext(String s, int[] next) {
        int j = 0;
        next[0] = j;
        for (int i = 1; i < s.length(); i++) {
            // next回滚条件
            while (j > 0 && s.charAt(j) != s.charAt(i)) {
                j = next[j - 1];
            }
            if (s.charAt(j) == s.charAt(i)) {
                j++;
            }
            next[i] = j;
        }
    }
    public boolean repeatedSubstringPattern(String s) {
        int len = s.length();
        int[] next = new int[len];
        getNext(s, next);
        if (len % (len - next[len - 1]) == 0 && next[len - 1] != 0) {
            return true;
        }
        return false;
    }
}

完全通过观察next数组的规律来判定是否该字符串有某子串重复多次构成。
若是重复多次构成,那么字符串长度%字串长度一定等于0。

### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值