自刷代码随想录day10

用栈实现队列

lc232. 用栈实现队列(简单)

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):实现 MyQueue 类:

  1. void push(int x) 将元素 x 推到队列的末尾
  2. int pop() 从队列的开头移除并返回元素
  3. int peek() 返回队列开头的元素
  4. boolean empty() 如果队列为空,返回 true ;否则,返回 false

说明
你 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
在这里插入图片描述

该题主要是已经提供了栈的一系列操作(说明中已经说明了),不需要自己去构建栈的一些列操作,我们只需要实现的是用两个栈来实现一个队列的操作,没有复杂度,需要注意的就是当stcakOut为空是,需要将stackIn中的元素放到stackOut中,总归还是两个单独操作的栈,而不是说是一个数组维护的两头插入的栈。

class MyQueue {

    Stack<Integer> stackIn;
    Stack<Integer> stackOut;

    // 初始化队列通过两个栈来实现
    public MyQueue() {
        stackIn = new Stack<>();
        stackOut = new Stack<>();
    }
    
    public void push(int x) {
        stackIn.push(x);
    }
    
    public int pop() {
        // 看看是否stackOut为空,为空则将stackIn中的元素全部放到stackOut中
        dumpStackIn();
        return stackOut.pop();
    }
    
    public int peek() {
        dumpStackIn();
        return stackOut.peek();
    }
    
    public boolean empty() {
        return stackIn.isEmpty() && stackOut.isEmpty();
    }
    
    // 如果stackOut为空,那么将stackIn中的元素全部放到stackOut中(stackIn中pop,然后stackOut中push)
    private void dumpStackIn(){
        if (!stackOut.isEmpty()) {
            return;
        }
            
        while (!stackIn.isEmpty()) {
            stackOut.push(stackIn.pop());
        }
    }

}

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue obj = new MyQueue();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.peek();
 * boolean param_4 = obj.empty() ;
 */

用队列实现栈

lc225. 用队列实现栈(简单)

请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。
实现 MyStack 类:

  1. void push(int x) 将元素 x 压入栈顶。
  2. int pop() 移除并返回栈顶元素。
  3. int top() 返回栈顶元素。
  4. boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。

注意
你只能使用队列的基本操作 —— 也就是 push to back、peek/pop from front、size 和 is empty 这些操作。
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
在这里插入图片描述

怎么去实现呢,我的理解是队列queueOne和queueTwo两个队列,每当要进栈,就进到有数据那个队列,每当要出栈,就将有数据的对列出队列,另一个队列进队列,直到第一个队列只剩一个元素,然后取出来。
优化:每当要进栈,就进到有数据那个队列 -------- > 可以每次确定进到queueOne中去

class MyStack {
    Queue<Integer> q1;
    Queue<Integer> q2; // 辅助队列,用来备份

    public MyStack() {
        q1 = new LinkedList<>();
        q2 = new LinkedList<>();
    }

    public void push(int x) {
        q1.offer(x);
    }

    public int pop() {
        while (q1.size() > 1) { // 将q1 导入q2,但要留下最后一个元素
            q2.offer(q1.poll());
        }
        int result = q1.poll(); // 留下的最后一个元素就是要返回的值
        q1.addAll(q2); // 再将q2赋值给q1
        q2.clear(); // 清空q2
        return result;
    }

    public int top() {
        int result = pop();
        q1.offer(result);
        return result;
    }

    public boolean empty() {
        return q1.isEmpty();
    }
}

这个双队列方法,其实卡尔哥的方法也挺好的,就是每次都构造一个栈,将新插入的元素放入queueOne中的队首。

class MyStack {

    Queue<Integer> queue1; // 和栈中保持一样元素的队列
    Queue<Integer> queue2; // 辅助队列

    /** Initialize your data structure here. */
    public MyStack() {
        queue1 = new LinkedList<>();
        queue2 = new LinkedList<>();
    }
    
    /** Push element x onto stack. */
    public void push(int x) {
        queue2.offer(x); // 先放在辅助队列中
        while (!queue1.isEmpty()){
            queue2.offer(queue1.poll());
        }
        Queue<Integer> queueTemp;
        queueTemp = queue1;
        queue1 = queue2;
        queue2 = queueTemp; // 最后交换queue1和queue2,将元素都放到queue1中
    }
    
    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
        return queue1.poll(); // 因为queue1中的元素和栈中的保持一致,所以这个和下面两个的操作只看queue1即可
    }
    
    /** Get the top element. */
    public int top() {
        return queue1.peek();
    }
    
    /** Returns whether the stack is empty. */
    public boolean empty() {
        return queue1.isEmpty();
    }
}

该题不涉及算法,也不需要我们去构建队列,但是我们需要掌握java中队列的一些操作。其实我们了很多都还不太熟练:
在这里插入图片描述
同时,由于Queue类实现了Collection接口,也就可以使用Collection的一些方法。
在这里插入图片描述
队列的构造函数也需要了解,由于Queue是一个接口,我们需要调用它的实现类的构造方法来进行实例化(这里使用的是LinkList,也可以使用比其他的方法):
在这里插入图片描述

后面也可以补充单队列来实现。


有效的括号

lc20. 有效的括号

给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。
有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
  3. 每个右括号都有一个对应的相同类型的左括号。
    在这里插入图片描述
    思路就是使用栈,当进入的字符是‘(’、‘{’、 '['时,我们将对应的闭括号入栈,当我们字符串遍历到的字符是右括号时,我们将它和栈顶元素作比较,如果不同则错了。对了则出栈,继续遍历。
class Solution {
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<Character>();
        int i = 0;
        while (i < s.length()) {
            if (s.charAt(i) == '(') {
                stack.push(')');
            }else if (s.charAt(i) == '[') {
                stack.push(']');
            }else if (s.charAt(i) == '{') {
                stack.push('}');
            }else if (stack.isEmpty() || s.charAt(i) != stack.pop()){
                return false;
            }
            i++;
        }
        return stack.isEmpty();
    }
}

需要注意的就是我们栈对象的生成需要泛型,也就是栈中存放什么类型的数据。

### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值