decimal问题:计算结果和精算表结果对比发现结果5舍6入

博客探讨了在Spark中使用pandas_udf处理数据时遇到的decimal精度问题。通过增大decimal位数,解决了计算过程中数值精度丢失的问题。示例代码展示了如何定义一个UDF函数,并注册到Spark中,用于进行特定的数值计算操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决办法:把udaf自定义函数中的decimal位数增大一点即可

 @F.pandas_udf("decimal(12,10)")
    def udf_lx(qx:pd.Series,lx:pd.Series) -> decimal:
        decimal.getcontext().rounding = "ROUND_HALF_DOWN"
        temp1 = Decimal(0)
        temp2 = Decimal(0)
        for i in range(0,len(qx)):
            if i == 0:
                temp1 = Decimal(lx[i])
                temp2 = Decimal(qx[i])
            else:
                temp1 = (temp1 * (1-temp2)).quantize(Decimal('0.0000000000'))
                temp2 = qx[i]

        return temp1

    spark.udf.register('udf_lx',udf_lx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值