改进yolov8|注意力机制:CoTAttention

这篇博客由计算机研究生刘姐原创整理,介绍了如何改进YOLOv8,重点探讨了CoTAttention的概念和作用。论文链接与代码链接已提供,内容包括CoTAttention的背景、设计细节及改进过程,核心代码将在后续部分展示,并提供了配置文件的修改指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位哥哥姐姐弟弟妹妹大家好,我是干饭王刘姐,主业干饭,主业2.0计算机研究生在读。
和我一起来改进yolov8变身计算机大牛吧!
本文中的论文笔记都是刘姐亲自整理,原创整理哦~

CoTAttention简介

论文链接

https://arxiv.org/pdf/2107.12292.pdf

代码链接

https://github.com/JDAI-CV/CoTNet

论文内容(原创整理)

在这里插入图片描述

前述

  • 上下文Transformer(CoT)块,用于视觉识别。这种设计充分利用了输入键之间的上下文信息来指导动态注意矩阵的学习,从而增强了视觉表征能力

具体

  • 提出了一个独特的设计transformer风格的块,命名为上下文transformer(CoT),如图所示。这种设计将关键字之间的上下文挖掘和2D特
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值