一、下载已训练好的模型
本文选择的是BERT-Base, Chinese:Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
所有预训练模型:https://github.com/google-research/bert#pre-trained-models
二、下载bert-as-server
1、下载bert-server服务
pip install bert-serving-server #server
pip install bert-serving-client #client
2、启动服务
#bert-serving-start -model_dir /project/bert/chinese-L-12_H768_A-12 -num worker=4 #模型解压路径,可指定GPU使用数量
bert-serving-start -model_dir /project/bert/chinese-L-12_H768_A-12
三、利用bert-as-server获取句子向量应用于QA系统
from bert_serving.client import BertClient
bc = BertClient()
sen_emb = bc