使用bert-service获取句向量和相似度计算

一、下载已训练好的模型

本文选择的是BERT-Base, Chinese:Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
所有预训练模型:https://github.com/google-research/bert#pre-trained-models

二、下载bert-as-server

1、下载bert-server服务

pip install bert-serving-server   #server
pip install bert-serving-client   #client

2、启动服务

#bert-serving-start -model_dir /project/bert/chinese-L-12_H768_A-12 -num worker=4    #模型解压路径,可指定GPU使用数量
bert-serving-start -model_dir /project/bert/chinese-L-12_H768_A-12

3、bert-server-document

三、利用bert-as-server获取句子向量应用于QA系统

from bert_serving.client import BertClient
bc = BertClient()
sen_emb = bc
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值