迪杰斯塔拉单源最短路径算法

#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include <algorithm>
#include <vector>
using namespace std;
typedef struct node {
	int v;//顶点
	int dis;//边权
}node;
const int maxn = 100;
const int INF = 1000000000;
vector<node> graph[maxn];
int n,m;//顶点个数和边的条数
int dp[maxn],MIN;
string ways[maxn] = {""};
bool visited[maxn] = { false };
void dijistra(int s)//s是源点
{
	char c = s + '0';
	//fill(ways, ways + n, c);
	fill(dp, dp + n, INF);//每条边初始化为无穷远
	dp[s] = 0;
	ways[s] = c;
	MIN = INF;//MIN保存距离当前顶点最近的点
	//j = -1;
	for (int i = 0; i < n; i++)//遍历n个点
	{
		int u = -1;
		MIN = INF;
		for (int j = 0; j < n; j++)
		{
			if (visited[j]==false&&dp[j] < MIN)
			{
				MIN = dp[j];
				u= j;//u为即将加入visited数组的下一个点
				//visited[u] = true;
			}
		}
		if (u == -1)
			return;
		//对于所有u点能够到达的边,检查长度是否可以优化
		visited[u] = true;
		for (int i = 0; i < graph[u].size(); i++)
		{
			int v = graph[u][i].v;
			if (visited[v] == false && dp[v] > dp[u] + graph[u][i].dis)
			{
				dp[v] = dp[u] + graph[u][i].dis;
				char c = v + '0';
				ways[v] = ways[u] + c;
			}
				

		}
	}
	
}
int main()
{
	int u, v, w, s;//u为起始边的顶点,v为到达边的顶点,w为边的权重,s为单源最短路径的起点
	while (scanf("%d %d %d", &n,&m,&s) != EOF)
	{
		for (int i = 0; i < m; i++)
		{
			scanf("%d %d %d", &u, &v,&w);
			node temp;
			temp.v = v;
			temp.dis = w;
			graph[u].push_back(temp);
			//graph[v].push_back(u);//无向图
		}
		dijistra(s);
		for (int i = 0; i < n; i++)
			printf("%d ", dp[i]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值