AutoModelForCausalLM.from_pretrained报错——requests.exceptions.ConnectionError(104)

文章描述了一个遇到的Python连接错误,具体是ConnectionError伴随着ProtocolError和ConnectionResetError。解决方案是检查并确认protobuf的版本,文中列出了一个成功运行的环境配置,包括各种库的特定版本,如deepspeed、huggingface-hub、numpy等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

requests.exceptions.ConnectionError: (ProtocolError(‘Connection aborted.’, ConnectionResetError(104, ‘Connection reset by peer’)), ‘(Request ID: 8ac8f7f5-c8b3-4e8f-b96d-148d80b5c920)’)

在这里插入图片描述

解决办法:
检查protobuf的版本

测试成功的版本如下:

python 3.9.17
cuda 11.6

deepspeed==0.9.5
huggingface-hub==0.16.3
numpy==1.25.1
pandas==1.2.5
peft==0.3.0
Pillow==10.0.0
protobuf==3.20.1
psutil==5.9.5
requests==2.31.0
safetensors==0.3.1
scipy==1.11.1
sentencepiece==0.1.99
six==1.16.0
tensorboard==2.13.0
tensorboard-data-server==0.7.1
tokenizers==0.13.3
torch==1.13.0+cu116
torchaudio==0.13.0+cu116
torchvision==0.14.0+cu116
tqdm==4.62.3
transformers==4.30.2
urllib3==1.26.16

### 解决 AutoModelForCausalLM `from_pretrained` 方法中的超时问题 当遇到从预训练模型加载 `AutoModelForCausalLM` 出现超时时,可以采取多种策略来解决问题。以下是几种有效的方案: #### 使用镜像站点或代理服务器 如果网络连接不稳定或者速度较慢,考虑使用国内的 Hugging Face 镜像站或其他加速服务。这能显著减少下载时间和失败率。 ```bash git lfs install git clone https://mirrors.tuna.tsinghua.edu.cn/git/huggingface/transformers.git BAAI/AquilaChat2-34B-16K [^3] ``` #### 设置更大的超时参数 调整请求库(如 requests 或 urllib3)内部使用的默认超时设置,给定更充裕的时间完成操作。 ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( "BAAI/AquilaChat2-34B-16K", timeout=300, # 单位秒,默认通常是几秒钟 ) [^1] ``` #### 下载并缓存模型文件到本地 提前手动获取所需的模型权重和其他资源,并将其存储在本地路径下。之后可以直接指向这些位置初始化模型实例而无需再次联网检索。 ```python # 假设已经克隆好仓库并将模型放置于指定目录 model_path = "./local_model_directory" tokenizer = transformers.AutoTokenizer.from_pretrained(model_path) model = transformers.AutoModelForCausalLM.from_pretrained(model_path) [^2] ``` #### 实施断点续传功能 对于特别大的模型包,在传输过程中容易因为各种原因中断。利用支持分片下载工具(比如 aria2c),实现部分已完成的数据保留机制,从而提高成功率。 ```bash aria2c -x 16 -s 16 https://huggingface.co/BAAI/AquilaChat2-34B-16K/resolve/main/pytorch_model.bin ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值