峰度和偏度的计算方法&偏度的处理

本文介绍如何使用Pandas进行数据集的基础统计分析,包括偏度(skew)和峰度(kurtosis)的计算,并提供了通过scipy库验证这些统计特性的方法。此外,还探讨了几种常用的数据变换技术,如对数变换、平方根变换等,以调整数据分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas的dataframe

train_data['base_FVC'].skew()
train_data['base_FVC'].kurt()

scipy

from scipy import stats 
#x为列表
stats.skew(x)
stats
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值