根据个人经验总结的深度学习入门路线(简单快速)
https://blog.csdn.net/weixin_44414948/article/details/109704871
深度学习入门一阶段demo练习:
https://blog.csdn.net/weixin_44414948/article/details/109864551
demo任务:
利用深度学习框架(TensorFlow2.0及以上版本、pytorch1.0及以上版本),搭建自定义卷积神经网络,在本地下载好的imageNet数据集上实现图像分类,要求准确率达到70%以上。(注:本任务主要练习本地数据集的读取。)
本次图像分类选用mini-imagenet数据集,图片类别为:
n01558993xxxxxxxx
n03417042xxxxxxxx
n02089867xxxxxxxx
n02129165xxxxxxxx
n04515003xxxxxxxx
各600张图片。在/data文件夹下创建5个以类别为名称的文件夹’bird’,‘car’,‘dog’,‘lion’,‘piano’, 将每一类图片放在所属文件下。
示例代码:
本地imageNet数据集读取并保存为numpy的.npz压缩格式
import glob
import os
import cv2
import numpy as np
import random
import tensorflow as tf
from tensorflow import keras
tf.random.set_seed(2222)
np.random.seed(2222)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
def Data_Generation():
X_data=[];Y_data=[]
path_data=[];path_label=[]
files=os.listdir('data')
for file in files:
print(file)
for path in glob.glob('data/'+fi