回归问题预测的目标是连续变量
数据描述
# 从sklearn.datasets导入波士顿房价数据读取器
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量boston中
boston = load_boston
# 输出数据描述
boston.DESCR
Number of Instances: 506
Number of Attributes: 13 numeric/categorical predictive.Median Value (attribute 14) is usually the target.
Missing Attribute Values: None
由上述可知,该数据集共有506条美国波士顿地区房价的数据,每条数据包括对指定房屋的13项数值型特征描述和目标房价(平均值)。另外,该数据中没有缺失的属性/特征值
数据处理
from sklearn.model_selection import train_test_split
import numpy as np
X = boston.data
y = boston.target
# 随机采样25%的数据构建测试样本,其余作为训练样本
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33)
# 分析回归目标值的差异
print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target))
print("The average target value is", np.mean(boston.target))
在上述对数据的探查中可以发现,预测目标房价之间的差异较大,因此需要对特征以及目标值进行标准化处理
# 从sklearn.preprocessing导入数据标准化模块
from sklearn.preprocessing import StandardScaler
# 分别初始化对特征和目标值的标准化器
ss_X = StandardScaler()
ss_y = StandardScaler()
# 分别对训练和测试数据的特征以及目标值进行标准化处理
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train.reshape(-1,1))
y_test = ss_y.transform(y_test.reshape(-1,1))
标准化后的训练target集
标准化后的验证target集
尝试线性模型
这里尝试使用线性回归模型LinearRegression和SGDRegressor
# 从sklearn.linear_model导入LinearRegression
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器LinearRegression
lr = LinearRegression()
# 使用训练数据进行参数估计
lr.fit(X_train, y_train)
# 对测试数据进行回归预测
lr_y_predict = lr.predict(X_test)
# 从sklearn.linear_model导入SGDRegressor
from sklearn.linear_model import SGDRegressor
# 使用默认配置初始化线性回归器SGDRegressor
sgdr = SGDRegressor()
# 使用训练数据进行参数估计
sgdr.fit(X_train, y_train)
# 对测试数据进行回归预测
sgdr_y_predict = sgdr.predict(X_test)
线性模型评估
通过平均绝对误差、均方误差、R-squared评价模型
LinearRegression的评估
# 使用LinearRegression模型自带的评估模块,输出评估结果
print('The value of default measurement of LinearRegression is', lr.score(X_test, y_test))
# 从sklearn.metrics依次导入r2_score、mean_squared_error以及mean_absolute_error用于回归性能的评估
from sklearn.metrics