基于ALBERT 进行文本向量化

目录

一、ALBERT

二、基于ALBERT进行文本向量化

三、总结


一、ALBERT

ALBERT (A Lite BERT) 是一种改进的 BERT 模型,旨在减少参数数量并提高训练速度,同时保持或提高性能。“albert_chinese_large”是 ALBERT 模型的一个版本,它是在中文数据集上预训练的。

ALBERT模型的主要特点包括:

1、参数减少技术:ALBERT 通过因式分解词嵌入参数和跨层参数共享来减少模型参数的数量,这使得模型更小,更容易训练和部署。

2、句子顺序预测:除了 BERT 中的掩码语言模型(MLM)任务外,ALBERT 还引入了句子顺序预测(SOP)任务,以改善句子级别的理解。

3、自监督学习:ALBERT 使用自监督学习方法进行预训练,这意味着它不需要标注数据。它通过预测掩码的单词和判断句子顺序来学习语言知识。

4、多尺度学习:ALBERT 在不同的尺度上学习信息,包括单词、短语和句子级别,这使得模型能够捕捉到不同层次的语言特征。

二、基于ALBERT进行文本向量化

1、导包、下载预训练模型

import torch
from transformers import BertTokenizer,BertModel,BertConfig
import numpy as np

pretrained = 'voidful/albert_chinese_large'
tokenizer = BertTokenizer.from_pretrained(pretrained)
model=BertModel.f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小楼一夜听春雨258

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值