目录
一、ALBERT
ALBERT (A Lite BERT) 是一种改进的 BERT 模型,旨在减少参数数量并提高训练速度,同时保持或提高性能。“albert_chinese_large”是 ALBERT 模型的一个版本,它是在中文数据集上预训练的。
ALBERT模型的主要特点包括:
1、参数减少技术:ALBERT 通过因式分解词嵌入参数和跨层参数共享来减少模型参数的数量,这使得模型更小,更容易训练和部署。
2、句子顺序预测:除了 BERT 中的掩码语言模型(MLM)任务外,ALBERT 还引入了句子顺序预测(SOP)任务,以改善句子级别的理解。
3、自监督学习:ALBERT 使用自监督学习方法进行预训练,这意味着它不需要标注数据。它通过预测掩码的单词和判断句子顺序来学习语言知识。
4、多尺度学习:ALBERT 在不同的尺度上学习信息,包括单词、短语和句子级别,这使得模型能够捕捉到不同层次的语言特征。
二、基于ALBERT进行文本向量化
1、导包、下载预训练模型
import torch
from transformers import BertTokenizer,BertModel,BertConfig
import numpy as np
pretrained = 'voidful/albert_chinese_large'
tokenizer = BertTokenizer.from_pretrained(pretrained)
model=BertModel.f