100个GEO基因表达芯片或转录组数据处理022.GSE48452

写在前边

虽然现在是高通量测序的时代,但是GEO、ArrayExpress等数据库储存并公开大量的基因表达芯片数据,还是会有大量的需求去处理芯片数据,并且建模或验证自己所研究基因的表达情况,芯片数据的处理也可能是大部分刚学生信的道友入门R语言数据处理的第一次实战,因此准备更新100个基因表达芯片或转录组高通量数据的处理。

在这里插入图片描述

数据信息检索

可以看到GSE48452是基因表达芯片数据,因此可以使用GEOquery包下

使用GEOquery包下载数据

remotes::install_github('ScienceAdvances/using')
using::using(tidyverse, GEOquery, magrittr, data.table, AnnoProbe, clusterProfiler, org.Hs.eg.db, org.Mm.eg.db)

注:using作用是一次性加载多个R包,不用写双引号,并且不在屏幕上打印包的加载信息

因为文件太大,在R内下载失败,可通过图片中的方法下载文件,GEOquery::getGEO直接读取本地的文件。

geo_accession <- "GSE48452"
eSet <- getGEO(filename=stringr::str_glue('{geo_accession}_series_matrix.txt.gz'), AnnotGPL = F, getGPL = F)
gpl <- eSet@annotation

处理表型数据

这部分是很关键的,可以筛选一下分组表型信息,只保留自己需要的样本,作为后续分析的样本(根据自己的研究目的筛选符合要求的样本)

pdata <- pData(eSet)
pdata %<>%
    dplyr::mutate(
        Sample = geo_accession,
        Sex=str_to_title(`Sex:ch1`),
        Fibrosis=`fibrosis:ch1`,
        BMI=`bmi:ch1`,
        Age=`age:ch1`,
        Group = case_when(
            `group:ch1`=='Control'~'Control',
            `group:ch1`=='Nash'~'NASH',
            TRUE~NA)
    ) %>%
        drop_na(Group) %>% 
    dplyr::select(Sample,Group,Sex,BMI,Fibrosis,Age,everything())

处理表达谱数据

数据大小不大于50不需要取log

exprs_mtx[is.na(exprs_mtx)] <- 0
exprs_mtx <- exprs(eSet)
if(max(exprs_mtx, na.rm = TRUE)<50 | min(exprs_mtx, na.rm = TRUE)<0){
  message("基因表达最大值小于50或者最小值小于0不需要log转化")
}else {
  message("基因表达最大值大于50需要log转化")
  exprs_mtx <- log2(exprs_mtx+1)
}
probe_exprs <- as.data.table(exprs_mtx, keep.rownames = "ProbeID")

探针与基因Symbol对应关系

从AnnoProbe包中获取探针与GeneID对应关系

AnnoProbe::checkGPL(gpl)
probe2symbol <- AnnoProbe::idmap(gpl = gpl, type = "bioc", mirror = "tencent", destdir = outdir) %>%
    dplyr::rename(ProbeID = probe_id, Feature = symbol) # pipe", "bioc", "soft"

ID转换

把表达矩阵中的探针名转换为基因名;transid是我写的一个R函数,有需要可以联系我

fdata <- transid(probe2symbol, probe_exprs)

保存数据

common_samples <- base::intersect(colnames(fdata),pdata$Sample)
fdata %<>% select(all_of(c("Feature",common_samples)))
fwrite(fdata, file = stringr::str_glue("{geo_accession}_{gpl}_fdata.csv.gz"))
pdata %<>% dplyr::filter(Sample %in% common_samples)
fwrite(pdata, file = stringr::str_glue("{geo_accession}_{gpl}_pdata.csv"))

### GEO RNA芯片数据处理的方法与工具 #### 使用GEOquery R包获取并处理RNA芯片数据 为了高效地获取和预处理来自Gene Expression Omnibus (GEO)的数据,`GEOquery`是一个非常有用的R软件包。该包允许用户通过指定的GEO序列号轻松下载整个记录特定文件,并能自动解析SOFT格式的内容以便于后续分析[^1]。 ```r library(GEOquery) gse <- getGEO("GSE154414", GSEMatrix = TRUE) exprs_data <- exprs(gse[[1]]) pdata <- pData(phenoData(gse[[1]])) ``` 上述代码展示了如何利用`getGEO()`函数来加载一个具体的GEO数据集(此处以GSE154414为例)。接着提取表达矩阵(`exprs()`)及样本注释信息(`pData(phenoData())`)用于下一步骤的研究工作。 #### 处理后的数据分析流程 对于获得的原始计数表,在实际应用中通常还需要经历一系列标准化操作: - **背景校正**:去除由于杂散光等因素引起的非特异性信号干扰; - **归一化**:调整批次效应和其他技术变异带来的偏差; - **质量控制**:识别异常样品点并决定是否排除它们; - **差异表达测试**:计算目标基因在不同条件下是否存在显著变化; 这些步骤可以通过多种生物信息学工具实现,比如limma、DESeq2等专门设计用来比较两组多组间转录水平差别的算法库[^3]。 #### 探讨探针到基因映射策略 当涉及到将平台特有的探针ID转换为通用的人类基因名称时,Bioconductor项目提供了多个解决方案。其中最常用的是借助AnnotationDbi及其衍生产品如org.Hs.eg.db来进行精确匹配。这有助于确保最终得到的结果能够被广泛接受并与现有文献保持一致。 ```r library(org.Hs.eg.db) probes_to_genes <- select(org.Hs.eg.db, keys=rownames(exprs_data), columns=c("SYMBOL"), keytype="PROBEID") merged_exprs <- merge(probes_to_genes, as.data.frame(exprs_data), by.x="PROBEID", by.y="row.names") final_matrix <- aggregate(. ~ SYMBOL, data=merged_exprs[,c("SYMBOL", colnames(exprs_data))], FUN=sum) ``` 此段脚本说明了怎样运用`select()`命令查询给定探针对应的官方批准符号(SYMBOL),随后将其同先前准备好的表达量表格相结合形成新的结构体。最后一步采用聚合方式累加重复项从而完成从探针层面过渡到基因级别的转变过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值