
kaggle
小刘要努力。
未来不担心,过去不后悔,现在不犹豫。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
kaggle(一)训练猫狗数据集
记录第一次使用kaggle训练猫狗数据集import os import shutilos.listdir('../input/train/train')base_dir = './cat_dog'train_dir = os.path.join(base_dir,'train')train_dir_dog = os.path.join(train_dir,'dog')tr...原创 2019-04-10 22:22:30 · 2564 阅读 · 0 评论 -
kaggle房价预测问题
参考:https://blog.csdn.net/m0_37870649/article/details/80979783sklean的线性模型完成kaggle房价预测问题https://www.kaggle.com/c/house-prices-Advanced-regression-techniques赛题给我们79个描述房屋的特征,要求我们据此预测房屋的最终售价,即对于测试集中每个房屋...原创 2019-04-21 22:44:59 · 2077 阅读 · 0 评论 -
kaggle机器学习作业(房价预测)
来源:kaggleMachine Learning Micro-Course Home PageRecapHere’s the code you’ve written so far. Start by running it again.# Code you have previously used to load dataimport pandas as pdfrom sklearn...原创 2019-05-25 16:06:13 · 1578 阅读 · 0 评论 -
kaggle (自杀分析)
今天无聊又看看kaggle ,看中了一个比较好的数据集https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016看来这个是大家都看过的数据集来来,刷起来import numpy as npimport pandas as pdimport seaborn as snsimport matpl...原创 2019-06-12 19:01:55 · 5091 阅读 · 6 评论 -
商城客户细分数据(kaggle)
无聊看下kaggle,发现了一个不错 的数据集您有超市购物中心和会员卡,您可以获得有关客户的一些基本数据,如客户ID,年龄,性别,年收入和支出分数。消费分数是您根据定义的参数(如客户行为和购买数据)分配给客户的分数。问题陈述 您拥有购物中心并希望了解哪些客户可以轻松融合[目标客户],以便可以向营销团队提供意见并相应地制定策略数据集是要根据最后两个特征,来判断是否给会员卡,在生活挺常见的,典...原创 2019-06-09 10:17:44 · 7164 阅读 · 6 评论 -
kaggle研究生招生(上)
无聊逛 kaggle ,https://www.kaggle.com/mohansacharya/graduate-admissions原创 2019-06-14 23:09:05 · 2074 阅读 · 0 评论 -
kaggle研究生招生(中)
上次将数据训练了模型由于数据中的大多数候选人都有70%以上的机会,许多不成功的候选人都没有很好的预测。df["Chance of Admit"].plot(kind = 'hist',bins = 200,figsize = (6,6))plt.title("Chance of Admit")plt.xlabel("Chance of Admit")plt.ylabel("Frequen...原创 2019-06-14 23:34:19 · 1558 阅读 · 0 评论 -
kaggle研究生招生(下)
对于该数据先采用回归算法,再转为分类算法,这次使用聚类算法聚类算法(无监督机器学习算法)df = pd.read_csv("../input/Admission_Predict.csv",sep = ",")df=df.rename(columns = {'Chance of Admit ':'ChanceOfAdmit'})serial = df["Serial No."]df.dro...原创 2019-06-14 23:48:06 · 1584 阅读 · 0 评论