series和ndarray

本文对比分析了NumPy的ndarray与pandas的series概念,深入讲解了两者作为数组对象的特点与使用方法,强调ndarray的多维特性及series的标签属性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@yunyun的机器学习之路

对series和ndarray的概念有点模糊,于是去翻了相关资料,特在此记录

先介绍ndarray:

NumPy的ndarray是一种多维数组对象,可以是一维,也可以是多维

import numpy as np
a = np.arange(10)
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
[IN]:  a[2:]
[OUT]: array([2, 3, 4, 5, 6, 7, 8, 9])

pandas的series也是属于一维数组,不过是带标签的一维数组,包含索引和数据

[IN]:
import pandas as pd 
b = pd.Series([1,2,3,4,5])
b
0    1
1    2
2    3
3    4
4    5
dtype: int64

 

[IN]:b.values[2:]
[OUT]:array([3, 4, 5], dtype=int64)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值